#author("2021-08-31T05:51:06+00:00","mss","mss")
* Research Outline [#aaecda2a]
*** Multi-scale Simulations for Softmatters (MSS) [#a34f2f34]
See [[MSS Project:http://www-tph.cheme.kyoto-u.ac.jp/mss]].
See [[MSS Project:http://multiscale.jp/]].
*** Direct Numerical Simulations (DNS) for Colloidal Dispersions [#s5653ff0]
See [[KAPSEL Project:http://www-tph.cheme.kyoto-u.ac.jp/kapsel]].
See [[KAPSEL Project:https://kapsel-dns.com/]].
Related Papers:
- Yasuya Nakayama, Kang Kim and Ryoichi Yamamoto,
Simulating (electro) hydrodynamic effects in colloidal dispersions: smoothed profile method
Eur. Phys. J. E, 26, 361-368 (2008).
- Kang Kim, Yasuya Nakayama and Ryoichi Yamamoto
Direct Numerical Simulations of Electrophoresis
Phys. Rev. Lett., 96, 208302 (2006).
- K. Kim and R. Yamamoto,
Efficient simulations of charged colloidal dispersions: A density functional approach,
Macromol. Theory Simul., 14, 278-284 (2005).
- Y. Nakayama and R. Yamamoto,
A Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions ,
Phys. Rev. E, 71, 036707 (2005).
- R. Yamamoto, Y. Nakayama, and K. Kim
A Smooth Interface Method for Simulating Colloidal Dispersions,
J. Phys.; Condens. Matt. 16, S1945 (2004). [PDF]
- R. Yamamoto,
Simulating particle dispersions in nematic liquid-crystal solvents,
Phys. Rev. Lett. 87, 075502 (2001).
***¡¡Dynamics and Rheology of Model Polymer Melts [#l2690f8e]
Related Papers:
- R. Yamamoto and A. Onuki,
Entanglements in a quiescent and sheared polymer melt,
Phys. Rev. E, 70, 041801 (2004).
- R. Yamamoto and A. Onuki,
Dynamics and Rheology of a supercooled polymer melt in shear flow,
J. Chem. Phys. 117 2359-2367 (2002).
*** Dynamics and Rheology of Glasses and Supercooled Liquids [#e45eb26a]
Visualization of the dynamical heterogeneity in Glassy Material
- Displacements of particles (start r[t], end r[t+t*]) are plotted for two temperatures. At a time t*, the non-Gaussian parameter shows a maxmum.
#ref(image1.jpg,center,80%)
- We then apply shear flow at a fixed temperature T=0.26, and plotted the displacement vectors (start r(t), end r(t+t*)-\dot{\gamma}\int_{t}^{t+t*} y(s) e_x ds¡Ë. Average streaming due to shear is subtracted. Dynamical heterogeneity tends to disappear with increasing shear rate (shear effect <-> temperature effect).
Related Papers:
- K. Miyazaki, D.R. Reichman, and R. Yamamoto
Supercooled Liquids under Shear: Theory and Simulation,
Phys. Rev E, in print. [cond-mat/0401528]
- R. Yamamoto and W. Kob,
Replica-exchange molecular dynamics simulation for supercooled liquids,
Phys. Rev. E 61, 5473-5476 (2000).
- K. Kim and R. Yamamoto,
Apparent finite-size effect in the dynamics of supercooled liquids,
Phys. Rev. E 61, R41-R44 (2000).
- R. Yamamoto and A. Onuki,
Heterogeneous Diffusion in Highly Supercooled Liquids,
Phys. Rev. Lett. 81, 4915-4018 (1998).
- R. Yamamoto and A. Onuki,
Dynamics of Highly Supercooled Liquids; Heterogeneity, Rheology, and Diffusion,
Phys. Rev. E 58, 3515-3529 (1998).
- R. Yamamoto and A. Onuki,
Nonlinear Rheology of a Highly Supercooled Liquid,
Europhys. Lett. 40, 61-66 (1997).
- R. Yamamoto and A. Onuki,
Kinetic Heterogeneities in a Highly Supercooled Liquid,
J. Phys. Soc. Jpn. 66, 2545-2548 (1997).
*** Diffusion Dynamics of Ions in Conductive Glasses [#a5e16636]
Related Papers:
- R. Yamamoto, M. Kano, and Y. Kawamoto,
Computer simulation of ionic conduction in ZrF_4-BaF_2 glass, II. Normal mode analysis,
J. Phys.: Cond. Matt. 9, 5157-5166 (1997).
- R. Yamamoto, T. Kobayashi, and Y. Kawamoto,
Computer simulation of ionic conduction in ZrF_4-BaF_2 glass,
J. Phys.: Cond. Matt. 7, 8557-8567 (1995).
*** Molecular Dynamics Simulations of Phese Equilibrium and Phase Transition [#y7f889dc]
Related Papers:
- R. Yamamoto and X.C. Zeng,
Molecular dynamics study of a phase-separating binary fluid mixture under shear flow,
Phys. Rev. E 59, 3223-3230 (1999).
- R. Yamamoto and K. Nakanishi,
Computer simulation of vapor-liquid phase separation in two- and three-dimensional fluids. II. Domain structure,
Phys. Rev. B 51, 2715-2722 (1995).
- R. Yamamoto and K. Nakanishi,
Computer simulation of vapor-liquid phase separation in two- and three-dimensional fluids,
Growth law of domain size, Phys. Rev. B 49, 14958-14966 (1994).
*** Inter-molecular Interactions of CFC Alternatives [#x58e7bec]
Related Papers:
- R. Yamamoto, O. Kitao, and K. Nakanishi,
Monte Carlo Simulation of Fluoro Propane,
Fluid Phase Equilibria 104, 349-361 (1995).
- R. Yamamoto, S. Matsuo, and Y. Tanaka,
Thermal Conductivity of Halogenated Ethanes, HFC-134a, HCFC-123 and HCFC-141b,
Int. J. Thermophys. 14, 79-90 (1993).