特別講義 「計算物理学:ソフトマターのシミュレーション」
0. はじめに [html]
0-1. プログラミングについて
0-2. 簡単な例題
0-3. まとめと演習
1.ソフトマターのシミュレーション
1-1. ソフトマターとは
1-2. 分子シミュレーション
1-3. 連続体シミュレーション
2.常微分方程式 [ノート:手書き]
2-1. Euler法
2-2. Leap-Frog法
2-3. Runge-Kutta法
2-4. Predictor-Corrector法
2-5. Symplectic法 (コメント [pdf])
2-6. まとめと演習 [html]
3.偏微分方程式 [ノート:手書き]
3-1. Elliptic(楕円型)方程式
3-2. Hyperbolic(双曲型)方程式
3-2-1. Simple method
3-2-2. Lax method
3-2-3. その他の方法
3-3. Parabolic(放物型)方程式
3-3-1. Simple method
3-3-2. Dufort-Frankel method
3-3-3. Crank-Nicholson method
3-4. まとめと演習 [html]
4.行列演算 [ノート:手書き]
4-1. Poisson方程式
4-1-1. Fourier変換を用いる方法
4-1-2. 行列を用いる方法
4-2. 連立1次方程式と逆行列
4-2-1. 直接法(LU分解法)
4-2-2. 反復法(Jacobi法、Gauss-Seidel法)
4-3. 行列の固有値に関連した問題
4-3-1. 行列の型とアルゴリズム
4-3-2. シュレディンガー方程式
4-3-3. 対称行列のJacobi変換
4-4. 線形数値演算パッケージLAPACK[html]
4-5. まとめと演習 [html]
5.モンテカルロシミュレーション [ノート:手書き]
5-1. カノニカルアンサンブル
5-2. メトロポリスの方法
5-2-1. 粗いサンプリング
5-2-2. Importance(重み付き)サンプリング
5-2-3. メトロポリスの方法
5-2-4. マルチカノニカルサンプリング
5-3. 液体のモンテカルロシミュレーション
5-3-1. 周期境界条件
5-3-2. ビリアル定理
5-3-3. 相互作用の打ち切りと長距離補正
5-4. まとめと演習 [html]
6.分子動力学シミュレーション [ノート:手書き]
6-1. 位相空間積分と時間積分
6-2. 運動方程式(ミクロカノニカル:E一定)
6-2-1. Verlet法
6-2-2. Leap-Frog法
6-3. 拡張系の運動方程式1(圧力P一定)
6-4. 拡張系の運動方程式2(温度T一定)
6-5. データ解析
6-5-1. 熱力学平均値
6-5-2. 輸送係数
6-6. まとめと演習 [html]
7.ソフトマターシミュレーションの最前線と将来
参考図書: