386 Appendix E. Integration Schemes

we can write the following predictions for xo(t + At) through x3(t + At):

xolt+At) = xolt) + xi(t) + x2t) + x3(t)
x1(t+ At) = x1{t) + 2x2(t) + 3x3(t)
(E.1.1)
x2(t +At) = x2(t) + 3xa(t)
x3(t+At) = x3(t).

Now that we have x¢(t + At), we can compute the forces at the predicted
position, and thus compute the corrected value for x, (t +At). We denote the

. dicted
difference between xectd and x5 by Ax:

dicted
Axy = Xczorrected _ nge icte: .

We now estimate “corrected” values for xo through x3, as follows:
xeomected _ ypredicted 4 ¢ Ay, (E.12)

where the C,, are constants are fixed for a given order algorithm. As in-
dicated, the values for Cy, are such that they yield an optimal compromise
between the accuracy and the stability of the algorithm. For instance, for a
fifth-order predictor-corrector algorithm (i.e., one that uses xo through x4),
the values for C;, are

Co = -;%
G = 7
C, = 1 (of course)
Cs = 17

One may iterate the predictor and corrector steps to self-consistency. How-
ever, there is little point in doing so because (1) every iteration requires a
force calculation. One would be better off spending the same computer time
to run with a shorter time step and only one iteration because (2) even if we
iterate the predictor-corrector algorithm to convergence, we still do not get
the exact trajectory: the error is still of order At™ for an nth-order algorithm.
This is why we gain more accuracy by going to a shorter time step than by
iterating to convergence at a fixed value of At.

E.2 Nosé-Hoover Algorithms 387

E.2 Nosé-Hoover Algorithms

As discussed in section 6.1.2, it is advantageous to implement the Nosé ther-
mostat using the formulation of Hoover. The equations of motion are given
by equations (6.1.24)—(6.1.27). Since velocity also appears on the right-hand
side of equation (6.1.25), this scheme cannot be implemented directly into
the velocity Verlet algorithm (see also section 4.3). In a standard constant-
N,V,E simulation, the velocity Verlet algorithm is of the following form:

f(t)

rt+At) = r(t) +v(t)At + mmz
VE+AY) = wit) 4 EFAUF)
2m

V\éhen we use this scheme for the equations of motion (6.1.24)—(6.1.26), we
obtain '

Ti(t+At) = ri(t) Fv(t)At 4 [fi(t)/mi — E(t)vi(t)] ATtZ (E2.1)
vi(t+At) = wi(t)+ [fi(t+At)/mi — E(t + At)vi(t + At)

+ fi(6)/ms — Bt (0] 5 (E22)

Ins(t+At) = Ins(t)+ &(t)At+ (Z_ mivZ(t) — gT) % (E.2.3)

Et+At) = E(t)+ { [Z mvZ(t + At) — gT}

; mivi(t) — gT] } 2%‘ (E.2.4)

T"he first step of the velocity Verlet algorithm can be carried out without dif-
ficulty. In the second step, we first update the velocity, using the old “forces”

to the intermediate value v(t + At/2) = v'. And then we must use the new
“forces” to update v’:

+

vilt+At) = v+t +At)/my — E(t 4+ At)vi(t + At)] % (E.2.5)
, A
Et+At) = &+ l; mvZ(t + At) — gT % (E.2.6)

In both equations, vi(t + At) and &(t + At) appear on the right- and left-
hand sides, therefore, these equations cannot be integrated exactly.! For this

!For the harmonic oscillator it is possible to find an analytic solution (see Case Study 12).

388 Appendix E. Integration Schemes

Algorithm 37 (Equations of Motion: Nosé-Hoover Thermostat A)

subroutine integratel (f,en,temp) Integrate equations of motion:
with Nosé-Hoover thermostat
v2=0 first step velocity Verlet alg.
do i=1,npart
fi=f(i)-xi*v(i) Nose Hoover force
x(1)=x(1)+dt* (v(i)+dtc*fi/2) update positions current time
v2=v2+v (i) **2
v(i)=v(i)+delt*fi/2 first update velocity
enddo
fs=(v2-g*temp)/q
s=s+dt* (xi+dt*£fs/2) update s
xi=xi+dt*fs/2 update £,
return
end

Comment to this algorithm:

1. This subroutine performs the first step of the velocity Verlet algorithm:

At?
Ti(t+At) = mi(t)+v(t)At + [fift)/ml—a(t)vi(t)]T
W) = vilt) + [(8)/m— EEw (0] 5
2 At?
s(t+At) = s(t) + &M+ |} mvi(t) - T 55

, At
&t = l:Z mlv :| ZQ

reason the Nosé-Hoover method is usually implemented using a predictor-
corrector scheme. In fact, in the case of velocity-dependent forces, most of
the advantages of Verlet-style algorithms disappear. However, as we show
in Algorithm 37, a velocity Verlet algorithm can still be used.

However, it is relatively straightforward to solve equations (E.2.5) and
(E.2.6) numerically. In this way we can still use the velocity Verlet algorithm.
The equations that we have to solve are of the form

At
hi(vi,&) = v{+[fi/mi—&w]7—vi=0

E.2 Nosé-Hoover Algorithms 389

At
hnp1(vi, &) = E'+{Zmivf J—Q—E 0.
In this equation, we have dropped the argument (t + At) for all £ and the v;.
One possible approach to solve this equation is to use the Newton-Raphson
scheme [30]; that is, to perform a Taylor expansion of h; to lowest order:

he(x+8x) =hi(x) + Y M 0) i,

=0 an
In what follows, we define x; = v; fori=1,--- Nandx; =& fori=N+ 1.
At every iteration we must solve, for each i,

N+1

Z ax, = —hy(x). (E2.7)

In the most general case, this would involve the inversion of an N x N matrix.
However, in this case, the matrix has such a simple form that equation (E.2.7)
can be solved analytically. The partial derivatives are

a=—1 I=N+T1,j=N+1
__— by = mv;At/Q i=N+1,j#N+1

O ! ci= —wiAt/2 i£EN4Tj=N+T
0%; d=—EAt/2—1 i£N+1,j=1

0 elsewhere.

Substitution into equation (E.2.7), gives the following equations for i = 0
and i > 0, respectively:

Cidxny1 +ddx; = —hy
abxn+r + X L bidx = —hw.

These equations have the following solution:

h hib;
XN+ = N+1d = Z =1 (E.2.8)

—ad+ Y b
1

oy = -a (h.i — C15XN+1) . (E.2.9)

With these equations one can make a very efficient implementation of the
Newton-Raphson scheme [30]. In Algorithms 37 and 38, an example is
given of the implementation. Note that, compared to Algorithm 15, we have
separated the integration into two separate routines, one for each step in the

390

Appendix E. Integration Schemes

Algorithm 38 (Equations of Motion: Nosé-Hoover B)

subroutine integrate2(f, en, temp)
v2=0
do i=1,npart
vn(i)=v(i)
v2=v2+vn (i) **2
enddo
xin=xi
ready=.false.
do while (.not.ready)
xio=xin
delxi=0
do i=1,npart
vo({i)=vn(i)
h(i)=vo(i)-v(i)

+ -(f(i)-xio*vo(i))*dt/2
bi=vo (i) *dt/g
delxi=delxi-h(i)*bi

enddo
d=-xio*dt/2-1
h(0)=xio-xin
+ +d* (-v2-g*temp) *dt/ (2*q)
cibi=-v2*dt**2/ (2*q)
delxi=(delxi+h(0)*d)/(d-cibi)
xin=xio+delxi
v2=0
do i=1,npart
ci=-vo(i)*dt/2
vn(i)=vo(i)+(h(i)-ci*delxi) /4
v2=v2+vn (i) **2
enddo
ready=.true.
i=0
do while (i.le.npart.and.ready)
i=i+1
if (i.le.npart) then
if {(abs{((vn(i)-vu(i))/vn(i))

+ .gt.err) ready=.false.
else
if (abs((xin-xio)/xin)
+ .gt.err) ready=.false.
endif
. (continue)....

integrate equations of motion
Nosé-Hoover thermostat
2nd step velocity Verlet alg.

start Newton-Raphson loop
store previous value

solve equation (E.2.7)

from equation (E.2.8)
new guess for ¢,

new guess v;
from equation (E.2.9)

test for convergence

E.2 Nosé-Hoover Algorithms 391

...{continue)....

enddo

enddo

do i=1l,npart
v{i)=vn(i)

enddo

xi=xin

ham=en+v2/2+ (xi**2*q) /2+g*temp*s conserved quantity

return

end

converged velocity

Comments to this algorithm:
1. This subroutine performs the second step of the velocity Verlet algorithm:

vi(t+ At) = Vi(tl) + [fi(t + At)/mi — E,(t + At)\)i(t + At)] %

At

E(t + At) TR

i

Et) + |) mwvi(t+At) —gT

The Newton-Raphson scheme is used to solve these equations numerically.

2. The term ham, defined in equation (6.1.28), is a quantity that needs to be
conserved and therefore is a useful check of the algorithm.

3. The term err is the convergence criteria.

velocity Verlet algorithm. For the Lennard-Jones fluid (see, Case Study 11),
we find that in approximately three iterations the results have converged to
an accuracy of 1in 10'°.

For the harmonic oscillator discussed in section 6.1.3, the iterative sche-
me just described is not required. Substitution of equation (E.2.6) into equa-
tion (E.2.5), yields the following cubic equation in v:

azvi(t+ At) + ajv(t + At) +ap =0

with
a —_— A—‘tz
3 = 20
At?
a1 = [Et)—gTl—=—1

