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1 Binomial distribution — Normal distribution

Start from Eq.(C6) shown below.
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Here we used Stirling’s approximation valid for large n.
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Take the 1st derivative of the above equation in terms of n.
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When n and M are both large, the peak in P(n) and also in In P(n) is very sharp around the

mean value n = (N),

Consider a Taylor expansion of In P(n) around the mean (N) by defining n = (N) + dn.

and thus
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Terminate Eq.(12) at the 2nd order in terms of n, and use Eqs.(9) and (14).

2
P(n) = const. x exp <_gn2> (15)
o

Determine const. so that that ffooo P(n)dn = 1, we finally obtain the following normal distri-
bution function with (N) = Mp and o2 = Mp(1 — p).
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2 Binomial distribution — Poisson distribution

We now consider the limit of M — oo while (N) = Mp = a remains constant. Notice that
the following approximations hold.

M-n ~ M (17)
(MM_!n)! = M(M-1)--(M-n+1)~M" (18)

Again start from Eq.(C6), we can derive Poisson distribution as shown below with (N) =
Mp = a and 0 = Mp(1 — p) ~ a.
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