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Unsolved problem
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In [10]: fig,ax=plt.subplots(subplot_kw={'xlabel':r'Absolute normalized price return $G_1$'
# probability distribution for stocks
for stock,lbl in zip([toyota,mitsui,mitsubishi,apple,msft,hpq], 

['Toyota','Mitsui','Mitsubishi','Apple','Microsoft','Hewlett-Packard'
edges,hist=pdf(np.abs(stock['Return d1']),bins=30)
ax.plot(edges,hist,label=lbl,lw=3)

# probability distribution for stock indices 
for stock,lbl in zip([sp500,nikkei],['S&P 500','Nikkei 225']):

edges,hist=pdf(np.abs(stock['Return d1']),bins=30)
ax.plot(edges,hist,label=lbl,lw=6,alpha=0.5)

# power law x^-3
x = np.logspace(-1, 1.2)
ax.plot(x,0.4*x**(-3),lw=6,ls='--',color='k',alpha=0.8,label=r'$\propto |x|^{-3}$'
ax.plot(x,np.abs(np.exp(-x**2/2)/np.sqrt(2*np.pi)),lw=6,ls='--',color='gray'
ax.semilogy()
ax.semilogx()
ax.set_ylim(1e-4, 2e0)
ax.set_xlim(1e-1, 2e1)
ax.legend(loc=3, fontsize=16, framealpha=0.8)
plt.show()
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Diffusion vs. finance
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FIG. 1: (a–c) Hierarchal description of the conventional Brownian motion in kinetic theory (Fig. a). Microscopic setup for
the Brownian motions. Gas particles and a massive tracer interact with each other, where the dynamics are described by the
Liouville equation (2). As the mesoscopic description (Fig. b), the full-dynamics are reduced to the one-body distribution �

(1)

for the gas particles, which are governed by the Boltzmann equation (6). The macroscopic dynamics of the tracer (Fig. c) are
described by the master-Boltzmann equation (8), or the Langevin equation (9) asymptotically for large system size M ! 1.
(d–f) Hierarchal structure of financial markets parallel to molecular kinetic theory. In the microscopic hierarchy (Fig. d), each
traders make decisions to submit or cancel orders. The dynamics of the traders correspond to those of molecules in kinetic
theory. In the mesoscopic hierarchy (Fig. e), the information on traders identifiers is lost by coarse-graining. We thus obtain the
dynamics of the order book (i.e., the quoted price distribution). The order-book profile corresponds to the velocity distribution
in the conventional kinetic theory. In the macroscopic hierarchy (Fig. f), the dynamics of the market price movement is finally
deduced by the coarse-graining, which exhibits the anomalous random walks. The market price dynamics corresponds to those
of the Brownian motion in kinetic theory.

B. BBGKY hierarchy and Boltzmann equation

To focus on the one-body dynamics of a gas particle or the tracer, let us introduce the reduced PSDs,
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On the assumption of binary interaction, we can exactly derive hierarchies of PSDs, such that
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with one-body Liouville operators L(1),L(T) and two-body collision operators L(2),L(TG). These equations are exact

but not closed in terms of �(1)
t

and P (T)
t

.
To obtain analytical solutions, a further approximation is necessary. The standard approximation in kinetic theory

is a mean-field approximation, called molecular chaos,

�(2)(p1, q1,p2, q2) ⇡ �(1)(p1, q1)�
(1)(p2, q2), (5)
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Microscopic models
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Model 1: 2-body stochastic dealer model
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Model 1: 2-body stochastic dealer model
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we needed at least three dealers to reproduce market proper-
ties; however, in the present stochastic model we require
only two. The advantages of this stochastic model are not
only its simplicity but also its solvability by analytical cal-
culation. In the usual agent-based approaches intensive nu-
merical simulation is the only way to obtain results; in such
cases exact or strict results are rarely obtained. Based on this
stochastic dealer model and its variants we can derive the
major empirical results mentioned above that have already
been obtained by simulation of the deterministic dealer
model by theoretical analysis.

Apart from agent-based modeling, the standard way to
model markets is by utilizing random walks. It is now widely
known that Bachelier !26" introduced a random-walk model
for market prices 5 years earlier than Einstein’s random-walk
model of Brownian motion !27". Nobel prize laurelled works
such as the portfolio theory, option price formulation !28",
and the AutoRegressive Conditional Heteroskedasticity
#ARCH$ and GARCH models !29,30" are all based on
random-walk models.

Recently, one of the authors #M.T.$ has introduced a new
type of extended random-walk model of the market, the so-
called Potentials of Unbalanced Complex Kinetics #PUCK$
model, in which a random walker moves according to a de-
forming potential force, the center point of which is given by
the moving average of the random walker’s traces. By using
this generalization, all major empirical laws can be estab-
lished; moreover, dynamical behaviors such as bubbles,
crashes, and inflations can also be described as following
from special cases of the market potential force !31,32". The
ARCH model can also be derived as a special limiting case
of this extended random-walk model !33".

Considering the wide applicability of the PUCK model
we need to answer the question concerning the origin of
market potential forces. This question has been partially an-
swered by using the deterministic dealer model !34". In this
paper, we are able to provide quantitative answers by using
the stochastic dealer model.

In the next section we introduce our stochastic dealer
models step by step in sequential subsections. The third sec-
tion is devoted to the relationship with the PUCK model, in
which we will see how dealers’ actions produce a market’s
potential force in a quantitative discussion. The final section
contains a summary.

II. STOCHASTIC DEALER MODEL

In this section we introduce three stochastic dealer mod-
els: model 1, model 2, and model 3. Model 1 is the simplest
market model in which the framework of the stochastic
dealer model is introduced. Then, we note two empirical
properties which model 1 cannot reflect. In model 2 and
model 3 we introduce two additional effects, respectively, to
deal with these difficulties. After combining these revisions,
the stochastic dealer model fully reflects all major empirical
laws of markets.

A. Model 1

First, we assume an artificial market consisting of only
two dealers who are offering both buying and selling prices.

The buying price, or bid price, is the current maximum price
at which the dealer wants to buy. The selling price, or ask
price, is the minimum price at which he will sell. For each
dealer the ask price is always higher than the bid price, be-
cause they want some margin, and the difference between
these prices is called the spread, which is assumed to be a
constant L in this model. We define the ith dealer’s midprice
at time t, p i#t$, as the average of his bid and ask prices. When
%p 1#t$− p 2#t$% is less than L, these dealers do not transact as
their transaction conditions are not fulfilled !Fig. 1#a$". In
such a case dealers are assumed to change their prices ran-
domly according to the following rule:

p i#t + !t$ = p i#t$ + cfi#t$, i = 1,2,

f i#t$ = &+ !p #prob. 1/2$
− !p #prob. 1/2$ .

' #1$

Here, f i#t$ is a random noise for the ith dealer and c is a
constant parameter. Then, the distance between p 1#t$ and
p 2#t$ is checked. If it is greater than or equal to L, then one
dealer’s bid price is higher than the other’s ask price, and a
transaction occurs !Fig. 1#c$". In such a case a unit volume
deal is assumed to be made, with the market price given by
the averaged price of the two dealers’ midprices. After this
transaction their midprices are assumed to shift to the market
price. These processes are repeated again and again and the
time proceeds in unit of !t.

It should be noted that there is a possibility that this
model produces a negative value for market price. In such a
case the step width of the price change !p should depend on
the market price, such that the value of !p is proportional to
the market price to avoid crossing the origin. Here, we pay
attention only to the case that the price fluctuation level is
much smaller than the market price and, for simplicity, we
assume that !p is constant.

For the convenience of analysis we define another unit of
time called the tick time, denoted by n , which takes an inte-
ger value incremented at each occurrence of a transaction.

Ask price

Bid price

Price

(a) (b) (c) (d)
Transaction

p1(t)
p2(t) P (n)

FIG. 1. #Color online$ Time evolution of the dealer model.
Squares and circles denote ask and bid prices, respectively. The ith
dealer’s midprice is denoted by p i#t$. #a$ In this situation no trans-
action occurs. #b$ The dealers’ prices follow random walks. #c$
When the distance between p 1#t$ and p 2#t$ is greater than or equal
to L, a transaction occurs and the market price is defined by the
averaged price of the two midprices. #d$ After this transaction both
dealers’ midprices move to the market price. These processes are
repeated.

YAMADA et al. PHYSICAL REVIEW E 79, 051120 #2009$
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  p(t)
Market price

  I(n) Trans. interval

  

p(t + 0) = a2(t) = b1(t)
Δp(t + 0) = p(t + 0)− p(t − 0)
p1(t + 0) = p2(t + 0) = p(t + 0)

No transaction Transaction



Model 1: 2-body stochastic dealer model

8Accordingly, P!n" denotes the market price at tick time n and
the nth transaction interval I!n" is defined by the time differ-
ence between the !n −1"th and nth transactions.

In Fig. 2, we plot an example of resulting market prices
and corresponding transaction intervals. In the subwindows
of these figures we also plot the probability density function
of price changes #P!n"− P!n −1"# and transaction intervals
I!n" both on a semilogarithmic scale. It is clear that the tail
parts of both of these distributions are well characterized by
exponential laws. As for the intervals, this result implies that
the occurrence of transactions of this model is approximated
by a Poisson process. It is interesting that the price change
distribution of this simplest model follows an exponential
distribution, except around !P=0, instead of a Gaussian dis-
tribution.

We can explain the functional form of the tails of these
distributions as follows. We define the difference of the deal-
ers’ prices by D!t"= p1!t"− p2!t", then the condition for the
occurrence of a transaction is given by #D!t"#" L, and we
also define the mass center by the average of the two mid-
prices, G!t"= $ p1!t"+ p2!t"% /2. As the mass center at the time
of transaction gives the market price, the market price can be
calculated from the information about G!t" at the time that
satisfies #D!t"#" L. Namely, !P is given by !G which is
defined by !G=G!t"−G!t!", where t! is the previous trans-
action time. These two variables define a two-dimensional
random walk with absorbing walls at D!t"=L and D!t"=−L
as shown in Fig. 3. The stochastic dynamics is described by
the following set of equations !2".

D!t + !t" = D!t" + &+ 2c!p !prob. 1/4"
# 0 !prob. 1/2"
− 2c!p !prob. 1/4" ,

' !2a"

!G!t + !t" = !G!t" + &+ c!p !prob. 1/4"
# 0 !prob. 1/2"
− c!p !prob. 1/4" .

' !2b"

When the random walker reaches one of the absorbing
walls, a transaction occurs, and by the transaction rule of
model 1 that the prices of the two dealers are then set to the
market price, the random walker goes to the origin, and a
new random walk begins. In this two-dimensional formula-

tion the transaction interval I!n" is given by the survival
time, that is, the time the random walker starting from the
origin takes to reach one of the absorbing walls. Similarly,
the market price change !P!n" is given by the random walk-
er’s location on the G axis.

In Fig. 3 an example of a random walk is shown for better
understanding of this mapping of model 1 to a two-
dimensional random walk. Here, the horizontal axis is the x
axis and the vertical one is the y axis. For theoretical analysis
we consider a continuum limit such that the mesh sizes of
space and time go to zero. Under the condition !t= !!x"2

= !!y"2, we find that the probability density u !x ,y , t" of the
particle in the !x ,y" plane at time t is described by the fol-
lowing diffusion equation:

!u !x,y,t"
!t

= c2(1
4

!2u

!x2 +
!2u

!y2) , !3"
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FIG. 2. Examples of time series of !a" market prices and !b" transaction intervals. Subwindows of these figures show the probability
densities of market price changes and transaction intervals on a semilogarithmic scale. The parameters for this simulation are as follows:
L=0.01, c=0.01, !p =0.01, and !t=!p ·!p .
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FIG. 3. Random walk in the !G-D plane. The particle starts
from the origin and continues a random walk until it touches one of
the horizontal walls, meaning that a market transaction occurs. The
transaction interval is given by the survival time of this random
walker and the market price change !P is given by the distance
along the !G axis from the origin to the position of the particle on
the absorbing wall.
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Model 1: 2-body stochastic dealer model
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In [7]: fig,[ax,bx]=plt.subplots(figsize=(15,7.5),ncols=2,subplot_kw={'ylabel':r'Probability dist
edges,hist=pdf(np.abs(dprice),bins=25) # probability density of price change G_1 between 
ax.plot(edges, hist, lw=3, label='Dealer Model')
x = np.linspace(0, 5)
ax.plot(x,2*np.exp(-x**2/2)/np.sqrt(2*np.pi),lw=6,ls='--',color='gray',alpha
ax.plot(x, 2*np.exp(-1.5*x),lw=6,color='k',ls='--',alpha=0.8,label=r'Exponential'
ax.set_xlabel(r'Absolute price return $G_1$')
ax.set_ylabel(r'Probability density')
ax.set_ylim([5e-4,1])
ax.semilogy()
ax.legend()
edges,hist=pdf(timeinterval,bins=100) # probability density of transaction time intervals
bx.plot(edges,hist, lw=2)
bx.set_xlabel(r'Transaction interval')
bx.set_ylabel(r'Probability distribution')
bx.semilogy()
plt.show()
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Model 2: 2-body stochastic dealer model + transaction interval
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!u"x,y,0# = !"x,y − L# :initial condition

u"x,0,t# = u"x,2L,t# = 0 :boundary condition.
$ "4#

Here, c2 is equivalent to the diffusion coefficient of this two-
dimensional random walk. The initial condition is the delta
function and the boundary condition is given by the absorb-
ing walls on the y axis, while there is no boundary in the x
direction. This diffusion equation is solved exactly as fol-
lows:

u"x,y,t# =
1

cL%"t
e−x2/c2t&

n=1

#

sin
n"

2
sin"Pny#e−c2Pn

2t. "5#

Here, Pn = n"
2L . We obtain the distributions of transaction in-

tervals Q1"I# and price changes Q2"'$P'# by calculating dis-
tributions of survival times and absorbed points from Eq. "5#,

Q1"I# =
4
"

&
n=1

# "− 1#n+1

"2n − 1#
c2P2n−1

2 e−c2P2n−1
2 I, "6a#

Q2"'$P'# =
4
L&

n=1

#

"− 1#n+1e−"2n−1#"/L'$P'. "6b#

In the case of large values of I and '$P' in Eq. "6#, these
summations are dominated by the term of n =1. So, the func-
tions I and '$P' can be approximated as

Q1"I# % e−"c"/2L#2I, "7a#

Q2"'$P'# % e−""/L#'$P'. "7b#

From these results we can derive the exponential laws of
interval distributions and the price change distributions al-
ready seen in Fig. 2. It is confirmed that the theoretical val-
ues of the decay constants "2L /c"#2 and L /", fit well with
the numerical results.

Higher-order moments of the distributions of transaction
intervals and price changes are also obtained exactly from
Eq. "6#. The kth moments of (Q1

k"I#)and (Q2
k"'$P'#)are cal-

culated as follows:

(Q1
k"I#)=

L2k&"k + 1#
c2k&"2k + 1#

Ek, "8a#

(Q2
k"'$P'#)=

4Lk&"k + 1#
"k+1 '"k# . "8b#

Here &"x# is the gamma function and Ek are the Euler num-

bers appearing in the expansion of sec x=&k=0
# Ekx2k

"2k#! ; E0

=1 , E1=1 , E2=5 , E3 =61, . . .. '"k# is the Dirichlet beta
function defined as '"k#=&n=0

# "−1#n

"2n+1#k . Using these results we
can calculate means and variances of transaction intervals
and volatilities with results as shown in Table I.

B. Model 2

In this section we focus on the statistical differences be-
tween transaction intervals of real markets and those of
model 1. In real dollar-yen exchange market data provided
by EBS for 6 years from 2000 to 2005, we find that the
transaction intervals exhibit a circadian pattern even for for-
eign exchange markets which are open continuously as
shown in Fig. 4 for the dollar-yen market. As seen clearly
from this figure, large numbers of transactions occur during
office hours of Tokyo, London, and New York and the trans-
action density is least a little before the opening of the Tokyo
offices.

In addition to this 24 h pattern, there are fluctuations with
much shorter time scales as typically shown in Fig. 5. In this
figure transaction events are shown by bars at the top and
corresponding dollar-yen rates are plotted in the lower sec-
tion. Here the window size is 10 min and we can find places
where bars tend to cluster, marked as “dense,” and others
where bars are “sparse.” The distribution of these intervals is
clearly seen not to describe by the simple theoretical model
of a Poisson process.

TABLE I. Exact solutions for the means and variances of trans-
action intervals and the absolute value of price changes in model 1.
K is Catalan’s constant; K='"2#= 1
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FIG. 4. Diurnal pattern of transactions in the dollar-yen market.
The vertical axis depicts the mean number of transactions per quar-
ter hour.
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FIG. 5. "Color online# Dollar-yen rates for 10 min "lower curve#
and transaction intervals "upper lines#. There are dense and sparse
periods for the occurrences of transactions.
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!u"x,y,0# = !"x,y − L# :initial condition

u"x,0,t# = u"x,2L,t# = 0 :boundary condition.
$ "4#

Here, c2 is equivalent to the diffusion coefficient of this two-
dimensional random walk. The initial condition is the delta
function and the boundary condition is given by the absorb-
ing walls on the y axis, while there is no boundary in the x
direction. This diffusion equation is solved exactly as fol-
lows:
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tributions of survival times and absorbed points from Eq. "5#,
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In the case of large values of I and '$P' in Eq. "6#, these
summations are dominated by the term of n =1. So, the func-
tions I and '$P' can be approximated as
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Q2"'$P'# % e−""/L#'$P'. "7b#

From these results we can derive the exponential laws of
interval distributions and the price change distributions al-
ready seen in Fig. 2. It is confirmed that the theoretical val-
ues of the decay constants "2L /c"#2 and L /", fit well with
the numerical results.

Higher-order moments of the distributions of transaction
intervals and price changes are also obtained exactly from
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and volatilities with results as shown in Table I.

B. Model 2

In this section we focus on the statistical differences be-
tween transaction intervals of real markets and those of
model 1. In real dollar-yen exchange market data provided
by EBS for 6 years from 2000 to 2005, we find that the
transaction intervals exhibit a circadian pattern even for for-
eign exchange markets which are open continuously as
shown in Fig. 4 for the dollar-yen market. As seen clearly
from this figure, large numbers of transactions occur during
office hours of Tokyo, London, and New York and the trans-
action density is least a little before the opening of the Tokyo
offices.

In addition to this 24 h pattern, there are fluctuations with
much shorter time scales as typically shown in Fig. 5. In this
figure transaction events are shown by bars at the top and
corresponding dollar-yen rates are plotted in the lower sec-
tion. Here the window size is 10 min and we can find places
where bars tend to cluster, marked as “dense,” and others
where bars are “sparse.” The distribution of these intervals is
clearly seen not to describe by the simple theoretical model
of a Poisson process.
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The clustering properties of transactions are known to be
well modeled by a self-modulation process introduced by the
authors !35", which is described as follows.

x#n + 1$ = e#n$%x#n$&! + f#n$ , #9$

where ! is the time scale of self-modulation,

%x#n$&! =
1
N '

k=0

N−1

x#n − k$ , #10$

e#n$ and f#n$ are independent noises, and N is the number of
transactions occurring within ! seconds. This process is a
modified Poisson process whose mean value is given by the
moving average of transaction intervals over the past ! sec-
onds. As a result, there is a greater tendency to cluster and
the so-called 1 / f fluctuation is realized in general.

Model 2 is designed to satisfy the real interval property by
applying the self-modulation process. We estimate the distri-
bution of e#n$ from real data by using the following relation
for the transaction intervals I#n$:

e#n$ =
I#n$

%I#n$&!
. #11$

Here the typical value of ! is 150 s. It is confirmed from
dollar-yen rate data that the distribution of e#n$ follows an
exponential distribution in general with mean value of unity.
This exponential distribution is favorable for our model con-
struction as model 1 automatically produces the exponential
interval distribution. As we can control the speed of transac-
tion intervals by controlling the speed of diffusion, we obtain
a revised model, model 2, by modifying the constant param-
eter c in Eq. #1$, which is directly related to the diffusion
coefficient, making it a time-dependent parameter c#n$ as
follows:

pi#t + "t$ = pi#t$ + c#n$f i#t$, i = 1,2,

f i#t$ = (+ "p #prob. 1/2$
− "p #prob. 1/2$ ,

) #12$

where

c#n$ =*%I&c=1

%I&!
. #13$

In Eq. #13$, %I&c=1 is a mean of transaction intervals shown in
Table I in the case of c=1 and %I&c=1=L2 /2. %I&! is the mov-
ing average of transaction intervals averaged over the latest !
seconds defined as %I&!= 1

N'k=0
N−1I#n −k$. In this equation, I#n

−k$ is the transaction interval that is the kth tick earlier than
the nth tick. N is the number of transactions within ! seconds
from time n . If I#n$# !, we set %I&!= I#n$. It is known from
Eq. #13$ that for larger %I&c=1 over %I&!, the value of c#n$ is
larger, that is, dealers tend to make larger changes in their
prices to effect more rapid transactions when transaction in-
tervals become shorter in the market. By this effect, Eq. #1$
of model 1 is modified to

D#t + "t$ = D#t$ + ++ 2c#n$"p #prob. 1/4$
$ 0 #prob. 1/2$
− 2c#n$"p #prob. 1/4$ ,

, #14a$

"G#t + "t$ = "G#t$ + ++ c#n$"p #prob. 1/4$
$ 0 #prob. 1/2$
− c#n$"p #prob. 1/4$ .

,
#14b$

Examples of random-walk traces are shown in Fig. 6. As
known from this figure the initial condition and the boundary
conditions are the same; however, the step size changes for
each random walk following the self-modulation formula-
tion. By this effect the transaction intervals tend to form
clusters as shown in Fig. 7.

In order to make the interval distribution fits well with
that of the real dollar-yen market, we introduce two thresh-
olds for the value of %I&!. When %I&!% 3, we set %I&!=3, and
when %I&!# 50, we set %I&!=50. These restrictions are needed
to prevent intervals from converging to zero or from diverg-
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x#n + 1$ = e#n$%x#n$&! + f#n$ , #9$

where ! is the time scale of self-modulation,

%x#n$&! =
1
N '

k=0

N−1

x#n − k$ , #10$

e#n$ and f#n$ are independent noises, and N is the number of
transactions occurring within ! seconds. This process is a
modified Poisson process whose mean value is given by the
moving average of transaction intervals over the past ! sec-
onds. As a result, there is a greater tendency to cluster and
the so-called 1 / f fluctuation is realized in general.

Model 2 is designed to satisfy the real interval property by
applying the self-modulation process. We estimate the distri-
bution of e#n$ from real data by using the following relation
for the transaction intervals I#n$:

e#n$ =
I#n$

%I#n$&!
. #11$

Here the typical value of ! is 150 s. It is confirmed from
dollar-yen rate data that the distribution of e#n$ follows an
exponential distribution in general with mean value of unity.
This exponential distribution is favorable for our model con-
struction as model 1 automatically produces the exponential
interval distribution. As we can control the speed of transac-
tion intervals by controlling the speed of diffusion, we obtain
a revised model, model 2, by modifying the constant param-
eter c in Eq. #1$, which is directly related to the diffusion
coefficient, making it a time-dependent parameter c#n$ as
follows:

pi#t + "t$ = pi#t$ + c#n$f i#t$, i = 1,2,

f i#t$ = (+ "p #prob. 1/2$
− "p #prob. 1/2$ ,

) #12$

where

c#n$ =*%I&c=1

%I&!
. #13$

In Eq. #13$, %I&c=1 is a mean of transaction intervals shown in
Table I in the case of c=1 and %I&c=1=L2 /2. %I&! is the mov-
ing average of transaction intervals averaged over the latest !
seconds defined as %I&!= 1

N'k=0
N−1I#n −k$. In this equation, I#n

−k$ is the transaction interval that is the kth tick earlier than
the nth tick. N is the number of transactions within ! seconds
from time n . If I#n$# !, we set %I&!= I#n$. It is known from
Eq. #13$ that for larger %I&c=1 over %I&!, the value of c#n$ is
larger, that is, dealers tend to make larger changes in their
prices to effect more rapid transactions when transaction in-
tervals become shorter in the market. By this effect, Eq. #1$
of model 1 is modified to

D#t + "t$ = D#t$ + ++ 2c#n$"p #prob. 1/4$
$ 0 #prob. 1/2$
− 2c#n$"p #prob. 1/4$ ,

, #14a$

"G#t + "t$ = "G#t$ + ++ c#n$"p #prob. 1/4$
$ 0 #prob. 1/2$
− c#n$"p #prob. 1/4$ .

,
#14b$

Examples of random-walk traces are shown in Fig. 6. As
known from this figure the initial condition and the boundary
conditions are the same; however, the step size changes for
each random walk following the self-modulation formula-
tion. By this effect the transaction intervals tend to form
clusters as shown in Fig. 7.

In order to make the interval distribution fits well with
that of the real dollar-yen market, we introduce two thresh-
olds for the value of %I&!. When %I&!% 3, we set %I&!=3, and
when %I&!# 50, we set %I&!=50. These restrictions are needed
to prevent intervals from converging to zero or from diverg-
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ing to infinity. With these minor revisions an example time
sequence produced by model 2 is plotted together with one
produced by model 1 in Fig. 7. Comparing these two se-
quences, we observe that model 2 can reproduce the cluster-
ing property quite well. Moreover, the lower interval se-
quence looks similar to the real sequence shown in Fig. 5.
Actually, the distribution of transaction intervals arising from
model 2 is now very close to that of the actual interval dis-
tribution as shown in Fig. 8.

C. Model 3

In this section we shift our attention from transaction in-
tervals to price changes. We know that the price change dis-
tribution of model 1 is characterized by an exponential dis-
tribution while that of the real market is often characterized
by a power law. It has been established that such power-law
distributions can be derived by introducing the effect of
trend-following prediction !24". This effect can be intro-
duced to our stochastic dealer model by simply adding a
further term, d#!P$M!t, which is defined as follows:

pi%t + !t& = pi%t& + d#!P$M!t + cfi%t& ,

f i%t& = '+ !p %prob. 1/2&
− !p %prob. 1/2& ( i = 1,2, %15&

where

#!P$M =
2

M%M + 1& )
k=0

M−1

%M − k&!P%n − k& . %16&

Here !P%n&= P%n&− P%n −1& is the price change at the nth
tick. The new term, #!P$M, is a kind of moving average of
price changes for M ticks with weights that decay linearly.
The parameter d in Eq. %15& is an important parameter that
governs the dealers’ strategy. A dealer with positive d is a
trend follower who predicts upcoming market prices propor-
tional to the latest price slope. On the other hand, a dealer
with a negative d is called a contrarian who forecasts that
upcoming market prices will go against the trend and that the

present market price is close to a local maximum or mini-
mum.

Adding this effect, Eq. %2& in model 1 is modified as

D%t + !t& = D%t& + *+ 2c!p %prob. 1/4&
" 0 %prob. 1/2&
− 2c!p %prob. 1/4& ,

+ %17a&

!G%t + !t& = !G%t& + d#!P$M!t + *+ c!p %prob. 1/4&
" 0 %prob. 1/2&
− c!p %prob. 1/4& .

+
%17b&

In the two-dimensional random-walk representation the ini-
tial conditions and the boundary conditions are invariant;
however, we have a horizontal flow proportional to d#!P$M
as shown in Fig. 9. The existence of this flow implies that the
distance of the absorption point from the origin is greater
than that of the original model 1. As the vertical motions are
completely identical to the original model 1, the transaction
intervals are also identical. So the absorbed point on the
horizontal axis is shifted by I%n&d#!P$M. The strength of the
flow depends on the parameter d and the latest price changes.

In this revised model the transaction intervals are identical
to those of model 1 because Eq. %17a& is the same as Eq. %2a&,
while the market price change is described by the following
equation:

!P%n + 1& = I%n&d#!P$M + F%n& . %18&

Here, the first term of the right-hand side is the distance
covered by the flow; d#!P$M gives the intensity of the flow
and I%n& is the transaction interval. The second term is iden-
tical to the price change of model 1. From the results already
obtained for model 1 it is clear that both I%n& and F%n& are
random variables characterized by exponential functions, so
Eq. %18& follows a random multiplicative process. We know
that a time series which is produced by a random multipli-
cative process generally follows a power law if the process
satisfies a stationary condition. In particular, in the case that
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ing to infinity. With these minor revisions an example time
sequence produced by model 2 is plotted together with one
produced by model 1 in Fig. 7. Comparing these two se-
quences, we observe that model 2 can reproduce the cluster-
ing property quite well. Moreover, the lower interval se-
quence looks similar to the real sequence shown in Fig. 5.
Actually, the distribution of transaction intervals arising from
model 2 is now very close to that of the actual interval dis-
tribution as shown in Fig. 8.

C. Model 3

In this section we shift our attention from transaction in-
tervals to price changes. We know that the price change dis-
tribution of model 1 is characterized by an exponential dis-
tribution while that of the real market is often characterized
by a power law. It has been established that such power-law
distributions can be derived by introducing the effect of
trend-following prediction !24". This effect can be intro-
duced to our stochastic dealer model by simply adding a
further term, d#!P$M!t, which is defined as follows:

pi%t + !t& = pi%t& + d#!P$M!t + cfi%t& ,

f i%t& = '+ !p %prob. 1/2&
− !p %prob. 1/2& ( i = 1,2, %15&

where

#!P$M =
2

M%M + 1& )
k=0

M−1

%M − k&!P%n − k& . %16&

Here !P%n&= P%n&− P%n −1& is the price change at the nth
tick. The new term, #!P$M, is a kind of moving average of
price changes for M ticks with weights that decay linearly.
The parameter d in Eq. %15& is an important parameter that
governs the dealers’ strategy. A dealer with positive d is a
trend follower who predicts upcoming market prices propor-
tional to the latest price slope. On the other hand, a dealer
with a negative d is called a contrarian who forecasts that
upcoming market prices will go against the trend and that the

present market price is close to a local maximum or mini-
mum.

Adding this effect, Eq. %2& in model 1 is modified as

D%t + !t& = D%t& + *+ 2c!p %prob. 1/4&
" 0 %prob. 1/2&
− 2c!p %prob. 1/4& ,

+ %17a&

!G%t + !t& = !G%t& + d#!P$M!t + *+ c!p %prob. 1/4&
" 0 %prob. 1/2&
− c!p %prob. 1/4& .

+
%17b&

In the two-dimensional random-walk representation the ini-
tial conditions and the boundary conditions are invariant;
however, we have a horizontal flow proportional to d#!P$M
as shown in Fig. 9. The existence of this flow implies that the
distance of the absorption point from the origin is greater
than that of the original model 1. As the vertical motions are
completely identical to the original model 1, the transaction
intervals are also identical. So the absorbed point on the
horizontal axis is shifted by I%n&d#!P$M. The strength of the
flow depends on the parameter d and the latest price changes.

In this revised model the transaction intervals are identical
to those of model 1 because Eq. %17a& is the same as Eq. %2a&,
while the market price change is described by the following
equation:

!P%n + 1& = I%n&d#!P$M + F%n& . %18&

Here, the first term of the right-hand side is the distance
covered by the flow; d#!P$M gives the intensity of the flow
and I%n& is the transaction interval. The second term is iden-
tical to the price change of model 1. From the results already
obtained for model 1 it is clear that both I%n& and F%n& are
random variables characterized by exponential functions, so
Eq. %18& follows a random multiplicative process. We know
that a time series which is produced by a random multipli-
cative process generally follows a power law if the process
satisfies a stationary condition. In particular, in the case that
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M =1 and I!n" and F!n" are independent in Eq. !18", we have
an exact solution #36$. In this model 3, I!n" and F!n" are not
statistically independent and so we do not have an exact
solution; however, if the effect of F is negligibly small, then
we can approximate the result using the solution for the in-
dependent case. We have the exponent ! for the power law
of cumulative price change distribution as follows:

%d %!&I!n"!' = 1. !19"

Here &I!n"!' is the !th-order moment of I!n", so we can
apply Eq. !8a" to Eq. !19". As a result, we have

%d %!
L2!"!! + 1"
c2!"!2! + 1"

E! = 1. !20"

It is known that empirical values of the power exponent of
the cumulative price change distribution are around −3 in the
actual market, so we set !=3, L=0.01, and c=0.01 in Eq.

!20". Then we have %d %(1.25. We can reproduce the power
law of price change distribution with exponent of −3 as rep-
resented in Fig. 10. Other parameters are taken to be #p
=0.01, #t=#p ·#p , and M =1.

III. RELATION BETWEEN THE DEALER MODEL AND
THE PUCK MODEL

We have seen that the stochastic dealer models can repro-
duce important empirical features of markets. In this section
we examine the relation to the market potential model called
PUCK #31,32$. In our previous work, we showed that the
deterministic dealer model can reproduce market potentials
confirmed by numerical simulation, and the essence for re-
construction of the potential is found to be the dealers’ fore-
casting effect using moving averages #34$. We now present
an analysis based on the present stochastic dealer model.

It is easy to confirm that price changes produced by model
3 yield nontrivial market potential functions as shown in Fig.
11. In this figure the parameter d in Eq. !15" is changed. We
set the parameter d =−1.0 during the period from n =1 to
1000 ticks, that is, the dealers are contrarians who predict
that the future price will move against the latest trend. The
parameter d =0 in the period n =1001 to 2000 ticks, that is,
the dealers are simple random walkers. And d =1.0 during
2001 to 3000 ticks, that is, the dealers are trend followers
predicting that in the near future prices will be proportional
to a moving average of price changes. We can clearly ob-
serve a stable, a flat, and an unstable potential function, re-
spectively, as expected. During 3001–4000, we set d =1.0
when the average of the past M price changes, &#P'M, is
greater than or equal to zero and we set d =−1.0 when
&#P'M $ 0. In such an asymmetric case, we can find an
asymmetric potential as shown in Fig. 11!d"; in that case the
market price increases nearly linearly on a large scale. It is
apparent that the market potential function and the dealers’
forecasting effect are also deeply related in this stochastic
model.

The PUCK model is formulated as follows:
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M =1 and I!n" and F!n" are independent in Eq. !18", we have
an exact solution #36$. In this model 3, I!n" and F!n" are not
statistically independent and so we do not have an exact
solution; however, if the effect of F is negligibly small, then
we can approximate the result using the solution for the in-
dependent case. We have the exponent ! for the power law
of cumulative price change distribution as follows:

%d %!&I!n"!' = 1. !19"

Here &I!n"!' is the !th-order moment of I!n", so we can
apply Eq. !8a" to Eq. !19". As a result, we have

%d %!
L2!"!! + 1"
c2!"!2! + 1"

E! = 1. !20"

It is known that empirical values of the power exponent of
the cumulative price change distribution are around −3 in the
actual market, so we set !=3, L=0.01, and c=0.01 in Eq.

!20". Then we have %d %(1.25. We can reproduce the power
law of price change distribution with exponent of −3 as rep-
resented in Fig. 10. Other parameters are taken to be #p
=0.01, #t=#p ·#p , and M =1.

III. RELATION BETWEEN THE DEALER MODEL AND
THE PUCK MODEL

We have seen that the stochastic dealer models can repro-
duce important empirical features of markets. In this section
we examine the relation to the market potential model called
PUCK #31,32$. In our previous work, we showed that the
deterministic dealer model can reproduce market potentials
confirmed by numerical simulation, and the essence for re-
construction of the potential is found to be the dealers’ fore-
casting effect using moving averages #34$. We now present
an analysis based on the present stochastic dealer model.

It is easy to confirm that price changes produced by model
3 yield nontrivial market potential functions as shown in Fig.
11. In this figure the parameter d in Eq. !15" is changed. We
set the parameter d =−1.0 during the period from n =1 to
1000 ticks, that is, the dealers are contrarians who predict
that the future price will move against the latest trend. The
parameter d =0 in the period n =1001 to 2000 ticks, that is,
the dealers are simple random walkers. And d =1.0 during
2001 to 3000 ticks, that is, the dealers are trend followers
predicting that in the near future prices will be proportional
to a moving average of price changes. We can clearly ob-
serve a stable, a flat, and an unstable potential function, re-
spectively, as expected. During 3001–4000, we set d =1.0
when the average of the past M price changes, &#P'M, is
greater than or equal to zero and we set d =−1.0 when
&#P'M $ 0. In such an asymmetric case, we can find an
asymmetric potential as shown in Fig. 11!d"; in that case the
market price increases nearly linearly on a large scale. It is
apparent that the market potential function and the dealers’
forecasting effect are also deeply related in this stochastic
model.

The PUCK model is formulated as follows:
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corresponding microscopic model of trend-following HFTs.
Starting from their “equations of motion,” Boltzmann-like
and Langevin-like equations are derived for the order-book
and price dynamics. A quantitative agreement is finally
shown with our empirical all findings. Our work opens the
door to systematic descriptions of finance based on micro-
scopic evidence.
Observed microscopic dynamics.—We analyzed the

high-frequency FX data between the U.S. dollar (USD)
and the Japanese Yen (JPY) on Electronic Broking Services
for a week in June 2016. The currency unit used in this
study is 0.001 yen, called the tenth pip (tpip). Here we
particularly focused on the dynamics of HFTs [34],
frequently submitting or canceling orders according to
algorithms (see Supplemental Material [35]). The typical
trajectories of bid and ask quoted prices are illustrated in
Figs. 2(a)–2(c) for the top 3 HFTs. They modify their
quoted prices by successive submission and cancellation at
high speed typically within seconds; almost 99% of their
submissions were finally canceled without transactions (see
Supplemental Material [35]). With the two-sided quotes
they also play the role of liquidity providers [40,41]
according to the market rule, keeping the balance between
the bid and ask order book. Buy-sell spreads, the difference
between the best bid and ask prices for a single HFT, were
observed to fluctuate around certain time constants (see the
insets for their distributions).
We then report the empirical microscopic law for the

trend-following strategy of individual traders. The bid and
ask quoted prices of the top ith HFT are denoted by bi and
ai (see Supplemental Material [35]). We investigated the
average movement of the trader’s quoted midprice zi ≡
ðbi þ aiÞ=2 between transactions conditional on the pre-
vious market transacted price movement [Fig. 2(d)]. Here

we introduce the tick time T as an integer time incremented
by every transaction. The mean transaction interval is
9.3 sec during this week. Because typical HFTs frequently
modify their price between transactions, we here study
HFTs’ trend following at one-tick precision. For the top 20
HFTs (Fig. 3), we found that the average and variance of
movement ΔziðTÞ≡ ziðT þ 1Þ − ziðTÞ obeyed

hΔziiΔp ≈ ci tanh
Δp
Δp$

i
; VΔp½Δzi&≈ σ2i ; ð1Þ

where the conditional average h…iΔp is taken when the last
price change is ΔpðT−1Þ≡pðTÞ−pðT−1Þ and Δzi ≠ 0
(see Supplemental Material [35]) and the conditional
variance is defined by VΔp½Δzi&≡ hðΔzi − hΔziiΔpÞ2iΔp.
Here, pðTÞ is the market transacted price at the T tick, and
ci, Δp$

i ; σ
2
i are characteristic constants unique to the trader

and independent of Δp. Their typical values were found to
be ci ≈ 6.0 tpip, Δp$

i ≈ 7.5 tpip, and σi ≈ 14.5 tpip. Our
finding (1) implies that the reaction of traders is linear for
small trends but saturates for large trends, and quantifies the
collective motion of HFTs. Remarkably, a similar behavior
was reported from a price movement data analysis at one-
month precision [42].
Microscopic model.—Here we introduce a minimal

microscopic model of HFTs incorporating the above
characters. We make four assumptions: (i) The number
of traders is sufficiently large; (ii) traders always quote both
bid and ask prices (for the ith trader, bi and ai) simulta-
neously with a unit volume; (iii) buy-sell spreads are time
constants unique to traders with distribution ρðLÞ. The
trader dynamics are then characterized by the midprice
zi ≡ ðbi þ aiÞ=2; and (iv) trend-following random walks
are assumed in the microscopic dynamics [Figs. 4(a)–4(c)],
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corresponding microscopic model of trend-following HFTs.
Starting from their “equations of motion,” Boltzmann-like
and Langevin-like equations are derived for the order-book
and price dynamics. A quantitative agreement is finally
shown with our empirical all findings. Our work opens the
door to systematic descriptions of finance based on micro-
scopic evidence.
Observed microscopic dynamics.—We analyzed the

high-frequency FX data between the U.S. dollar (USD)
and the Japanese Yen (JPY) on Electronic Broking Services
for a week in June 2016. The currency unit used in this
study is 0.001 yen, called the tenth pip (tpip). Here we
particularly focused on the dynamics of HFTs [34],
frequently submitting or canceling orders according to
algorithms (see Supplemental Material [35]). The typical
trajectories of bid and ask quoted prices are illustrated in
Figs. 2(a)–2(c) for the top 3 HFTs. They modify their
quoted prices by successive submission and cancellation at
high speed typically within seconds; almost 99% of their
submissions were finally canceled without transactions (see
Supplemental Material [35]). With the two-sided quotes
they also play the role of liquidity providers [40,41]
according to the market rule, keeping the balance between
the bid and ask order book. Buy-sell spreads, the difference
between the best bid and ask prices for a single HFT, were
observed to fluctuate around certain time constants (see the
insets for their distributions).
We then report the empirical microscopic law for the

trend-following strategy of individual traders. The bid and
ask quoted prices of the top ith HFT are denoted by bi and
ai (see Supplemental Material [35]). We investigated the
average movement of the trader’s quoted midprice zi ≡
ðbi þ aiÞ=2 between transactions conditional on the pre-
vious market transacted price movement [Fig. 2(d)]. Here

we introduce the tick time T as an integer time incremented
by every transaction. The mean transaction interval is
9.3 sec during this week. Because typical HFTs frequently
modify their price between transactions, we here study
HFTs’ trend following at one-tick precision. For the top 20
HFTs (Fig. 3), we found that the average and variance of
movement ΔziðTÞ≡ ziðT þ 1Þ − ziðTÞ obeyed

hΔziiΔp ≈ ci tanh
Δp
Δp$

i
; VΔp½Δzi&≈ σ2i ; ð1Þ

where the conditional average h…iΔp is taken when the last
price change is ΔpðT−1Þ≡pðTÞ−pðT−1Þ and Δzi ≠ 0
(see Supplemental Material [35]) and the conditional
variance is defined by VΔp½Δzi&≡ hðΔzi − hΔziiΔpÞ2iΔp.
Here, pðTÞ is the market transacted price at the T tick, and
ci, Δp$

i ; σ
2
i are characteristic constants unique to the trader

and independent of Δp. Their typical values were found to
be ci ≈ 6.0 tpip, Δp$

i ≈ 7.5 tpip, and σi ≈ 14.5 tpip. Our
finding (1) implies that the reaction of traders is linear for
small trends but saturates for large trends, and quantifies the
collective motion of HFTs. Remarkably, a similar behavior
was reported from a price movement data analysis at one-
month precision [42].
Microscopic model.—Here we introduce a minimal

microscopic model of HFTs incorporating the above
characters. We make four assumptions: (i) The number
of traders is sufficiently large; (ii) traders always quote both
bid and ask prices (for the ith trader, bi and ai) simulta-
neously with a unit volume; (iii) buy-sell spreads are time
constants unique to traders with distribution ρðLÞ. The
trader dynamics are then characterized by the midprice
zi ≡ ðbi þ aiÞ=2; and (iv) trend-following random walks
are assumed in the microscopic dynamics [Figs. 4(a)–4(c)],

106.7

106.8

6th June 01:31 6th June 01:32

Ask order
Bid order

Market price
Transaction  107.0

 107.1

 107.2

6th June 16:49 6th June 16:50

PDF

 107.1

 107.2

 107.3

 107.4

6th June 07:29 6th June 07:30

JPY/USD

 0

 0.02
 0.04
 0.06

 20  40  60  80
Buy-Sell Spread

PDF

 0

 0.02
 0.04
 0.06

 20  40  60  80
Buy-Sell Spread

PDF

 0

 0.02
 0.04
 0.06

 20  40  60  80
Buy-Sell Spread

(d) Trend-following analysis(a) 1st top HFT (b) 2nd top HFT

Trend

Reaction of i th trader:
quoted price movement

Price

Time
(c) 3rd top HFT

FIG. 2. (a)–(c) Lifetimes of orders are plotted as trajectories for the top 3 HFTs. Typical traders tend towards continuous two-sided
quotes, with the buy-sell spread fluctuating around a time constant unique to the trader. The percentage of two-sided quotes among HFTs
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corresponding microscopic model of trend-following HFTs.
Starting from their “equations of motion,” Boltzmann-like
and Langevin-like equations are derived for the order-book
and price dynamics. A quantitative agreement is finally
shown with our empirical all findings. Our work opens the
door to systematic descriptions of finance based on micro-
scopic evidence.
Observed microscopic dynamics.—We analyzed the

high-frequency FX data between the U.S. dollar (USD)
and the Japanese Yen (JPY) on Electronic Broking Services
for a week in June 2016. The currency unit used in this
study is 0.001 yen, called the tenth pip (tpip). Here we
particularly focused on the dynamics of HFTs [34],
frequently submitting or canceling orders according to
algorithms (see Supplemental Material [35]). The typical
trajectories of bid and ask quoted prices are illustrated in
Figs. 2(a)–2(c) for the top 3 HFTs. They modify their
quoted prices by successive submission and cancellation at
high speed typically within seconds; almost 99% of their
submissions were finally canceled without transactions (see
Supplemental Material [35]). With the two-sided quotes
they also play the role of liquidity providers [40,41]
according to the market rule, keeping the balance between
the bid and ask order book. Buy-sell spreads, the difference
between the best bid and ask prices for a single HFT, were
observed to fluctuate around certain time constants (see the
insets for their distributions).
We then report the empirical microscopic law for the

trend-following strategy of individual traders. The bid and
ask quoted prices of the top ith HFT are denoted by bi and
ai (see Supplemental Material [35]). We investigated the
average movement of the trader’s quoted midprice zi ≡
ðbi þ aiÞ=2 between transactions conditional on the pre-
vious market transacted price movement [Fig. 2(d)]. Here

we introduce the tick time T as an integer time incremented
by every transaction. The mean transaction interval is
9.3 sec during this week. Because typical HFTs frequently
modify their price between transactions, we here study
HFTs’ trend following at one-tick precision. For the top 20
HFTs (Fig. 3), we found that the average and variance of
movement ΔziðTÞ≡ ziðT þ 1Þ − ziðTÞ obeyed

hΔziiΔp ≈ ci tanh
Δp
Δp$

i
; VΔp½Δzi&≈ σ2i ; ð1Þ

where the conditional average h…iΔp is taken when the last
price change is ΔpðT−1Þ≡pðTÞ−pðT−1Þ and Δzi ≠ 0
(see Supplemental Material [35]) and the conditional
variance is defined by VΔp½Δzi&≡ hðΔzi − hΔziiΔpÞ2iΔp.
Here, pðTÞ is the market transacted price at the T tick, and
ci, Δp$

i ; σ
2
i are characteristic constants unique to the trader

and independent of Δp. Their typical values were found to
be ci ≈ 6.0 tpip, Δp$

i ≈ 7.5 tpip, and σi ≈ 14.5 tpip. Our
finding (1) implies that the reaction of traders is linear for
small trends but saturates for large trends, and quantifies the
collective motion of HFTs. Remarkably, a similar behavior
was reported from a price movement data analysis at one-
month precision [42].
Microscopic model.—Here we introduce a minimal

microscopic model of HFTs incorporating the above
characters. We make four assumptions: (i) The number
of traders is sufficiently large; (ii) traders always quote both
bid and ask prices (for the ith trader, bi and ai) simulta-
neously with a unit volume; (iii) buy-sell spreads are time
constants unique to traders with distribution ρðLÞ. The
trader dynamics are then characterized by the midprice
zi ≡ ðbi þ aiÞ=2; and (iv) trend-following random walks
are assumed in the microscopic dynamics [Figs. 4(a)–4(c)],
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corresponding microscopic model of trend-following HFTs.
Starting from their “equations of motion,” Boltzmann-like
and Langevin-like equations are derived for the order-book
and price dynamics. A quantitative agreement is finally
shown with our empirical all findings. Our work opens the
door to systematic descriptions of finance based on micro-
scopic evidence.
Observed microscopic dynamics.—We analyzed the

high-frequency FX data between the U.S. dollar (USD)
and the Japanese Yen (JPY) on Electronic Broking Services
for a week in June 2016. The currency unit used in this
study is 0.001 yen, called the tenth pip (tpip). Here we
particularly focused on the dynamics of HFTs [34],
frequently submitting or canceling orders according to
algorithms (see Supplemental Material [35]). The typical
trajectories of bid and ask quoted prices are illustrated in
Figs. 2(a)–2(c) for the top 3 HFTs. They modify their
quoted prices by successive submission and cancellation at
high speed typically within seconds; almost 99% of their
submissions were finally canceled without transactions (see
Supplemental Material [35]). With the two-sided quotes
they also play the role of liquidity providers [40,41]
according to the market rule, keeping the balance between
the bid and ask order book. Buy-sell spreads, the difference
between the best bid and ask prices for a single HFT, were
observed to fluctuate around certain time constants (see the
insets for their distributions).
We then report the empirical microscopic law for the

trend-following strategy of individual traders. The bid and
ask quoted prices of the top ith HFT are denoted by bi and
ai (see Supplemental Material [35]). We investigated the
average movement of the trader’s quoted midprice zi ≡
ðbi þ aiÞ=2 between transactions conditional on the pre-
vious market transacted price movement [Fig. 2(d)]. Here

we introduce the tick time T as an integer time incremented
by every transaction. The mean transaction interval is
9.3 sec during this week. Because typical HFTs frequently
modify their price between transactions, we here study
HFTs’ trend following at one-tick precision. For the top 20
HFTs (Fig. 3), we found that the average and variance of
movement ΔziðTÞ≡ ziðT þ 1Þ − ziðTÞ obeyed

hΔziiΔp ≈ ci tanh
Δp
Δp$

i
; VΔp½Δzi&≈ σ2i ; ð1Þ

where the conditional average h…iΔp is taken when the last
price change is ΔpðT−1Þ≡pðTÞ−pðT−1Þ and Δzi ≠ 0
(see Supplemental Material [35]) and the conditional
variance is defined by VΔp½Δzi&≡ hðΔzi − hΔziiΔpÞ2iΔp.
Here, pðTÞ is the market transacted price at the T tick, and
ci, Δp$

i ; σ
2
i are characteristic constants unique to the trader

and independent of Δp. Their typical values were found to
be ci ≈ 6.0 tpip, Δp$

i ≈ 7.5 tpip, and σi ≈ 14.5 tpip. Our
finding (1) implies that the reaction of traders is linear for
small trends but saturates for large trends, and quantifies the
collective motion of HFTs. Remarkably, a similar behavior
was reported from a price movement data analysis at one-
month precision [42].
Microscopic model.—Here we introduce a minimal

microscopic model of HFTs incorporating the above
characters. We make four assumptions: (i) The number
of traders is sufficiently large; (ii) traders always quote both
bid and ask prices (for the ith trader, bi and ai) simulta-
neously with a unit volume; (iii) buy-sell spreads are time
constants unique to traders with distribution ρðLÞ. The
trader dynamics are then characterized by the midprice
zi ≡ ðbi þ aiÞ=2; and (iv) trend-following random walks
are assumed in the microscopic dynamics [Figs. 4(a)–4(c)],
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movements of the market price and the midprice of the ith trader, respectively.
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dz iðtÞ
dt

¼ c tanh
ΔpðtÞ
Δp$ þ σηRi ðtÞ; ð2Þ

with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

z iðtþ 0Þ ¼ z iðtÞ −
Li

2
; z jðtþ 0Þ ¼ z jðtÞ þ

Lj

2
: ð4Þ

Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡

P
iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
N
P

s¼&1

R
dL0ρðL0Þ½JsLL0ðrþsL=2Þ−JsLL0(with JsLL0ðrÞ≡

ðσ2=2Þj∂̃rr0 jϕLL0ðr;r0Þjr−r0¼sðLþL0Þ=2 and j∂̃rr0 jf≡j∂f=∂rjþ
j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”

ϕLL0ðr; r0Þ ≈ ϕLðrÞϕL0ðr0Þ; ð5Þ

we derive the Boltzmann-like equation with collision
integrals for the order book,

∂ϕL

∂t ≈
σ2

2

∂2ϕL

∂r2
þN

X

s¼&1

Z
dL0ρðL0Þ½̃JsLL0ðrþsL=2Þ− J̃sLL0(; ð6Þ
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dz iðtÞ
dt

¼ c tanh
ΔpðtÞ
Δp$ þ σηRi ðtÞ; ð2Þ

with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

z iðtþ 0Þ ¼ z iðtÞ −
Li

2
; z jðtþ 0Þ ¼ z jðtÞ þ

Lj

2
: ð4Þ

Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
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corresponding microscopic model of trend-following HFTs.
Starting from their “equations of motion,” Boltzmann-like
and Langevin-like equations are derived for the order-book
and price dynamics. A quantitative agreement is finally
shown with our empirical all findings. Our work opens the
door to systematic descriptions of finance based on micro-
scopic evidence.
Observed microscopic dynamics.—We analyzed the

high-frequency FX data between the U.S. dollar (USD)
and the Japanese Yen (JPY) on Electronic Broking Services
for a week in June 2016. The currency unit used in this
study is 0.001 yen, called the tenth pip (tpip). Here we
particularly focused on the dynamics of HFTs [34],
frequently submitting or canceling orders according to
algorithms (see Supplemental Material [35]). The typical
trajectories of bid and ask quoted prices are illustrated in
Figs. 2(a)–2(c) for the top 3 HFTs. They modify their
quoted prices by successive submission and cancellation at
high speed typically within seconds; almost 99% of their
submissions were finally canceled without transactions (see
Supplemental Material [35]). With the two-sided quotes
they also play the role of liquidity providers [40,41]
according to the market rule, keeping the balance between
the bid and ask order book. Buy-sell spreads, the difference
between the best bid and ask prices for a single HFT, were
observed to fluctuate around certain time constants (see the
insets for their distributions).
We then report the empirical microscopic law for the

trend-following strategy of individual traders. The bid and
ask quoted prices of the top ith HFT are denoted by bi and
ai (see Supplemental Material [35]). We investigated the
average movement of the trader’s quoted midprice zi ≡
ðbi þ aiÞ=2 between transactions conditional on the pre-
vious market transacted price movement [Fig. 2(d)]. Here

we introduce the tick time T as an integer time incremented
by every transaction. The mean transaction interval is
9.3 sec during this week. Because typical HFTs frequently
modify their price between transactions, we here study
HFTs’ trend following at one-tick precision. For the top 20
HFTs (Fig. 3), we found that the average and variance of
movement ΔziðTÞ≡ ziðT þ 1Þ − ziðTÞ obeyed

hΔziiΔp ≈ ci tanh
Δp
Δp$

i
; VΔp½Δzi&≈ σ2i ; ð1Þ

where the conditional average h…iΔp is taken when the last
price change is ΔpðT−1Þ≡pðTÞ−pðT−1Þ and Δzi ≠ 0
(see Supplemental Material [35]) and the conditional
variance is defined by VΔp½Δzi&≡ hðΔzi − hΔziiΔpÞ2iΔp.
Here, pðTÞ is the market transacted price at the T tick, and
ci, Δp$

i ; σ
2
i are characteristic constants unique to the trader

and independent of Δp. Their typical values were found to
be ci ≈ 6.0 tpip, Δp$

i ≈ 7.5 tpip, and σi ≈ 14.5 tpip. Our
finding (1) implies that the reaction of traders is linear for
small trends but saturates for large trends, and quantifies the
collective motion of HFTs. Remarkably, a similar behavior
was reported from a price movement data analysis at one-
month precision [42].
Microscopic model.—Here we introduce a minimal

microscopic model of HFTs incorporating the above
characters. We make four assumptions: (i) The number
of traders is sufficiently large; (ii) traders always quote both
bid and ask prices (for the ith trader, bi and ai) simulta-
neously with a unit volume; (iii) buy-sell spreads are time
constants unique to traders with distribution ρðLÞ. The
trader dynamics are then characterized by the midprice
zi ≡ ðbi þ aiÞ=2; and (iv) trend-following random walks
are assumed in the microscopic dynamics [Figs. 4(a)–4(c)],
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corresponding microscopic model of trend-following HFTs.
Starting from their “equations of motion,” Boltzmann-like
and Langevin-like equations are derived for the order-book
and price dynamics. A quantitative agreement is finally
shown with our empirical all findings. Our work opens the
door to systematic descriptions of finance based on micro-
scopic evidence.
Observed microscopic dynamics.—We analyzed the

high-frequency FX data between the U.S. dollar (USD)
and the Japanese Yen (JPY) on Electronic Broking Services
for a week in June 2016. The currency unit used in this
study is 0.001 yen, called the tenth pip (tpip). Here we
particularly focused on the dynamics of HFTs [34],
frequently submitting or canceling orders according to
algorithms (see Supplemental Material [35]). The typical
trajectories of bid and ask quoted prices are illustrated in
Figs. 2(a)–2(c) for the top 3 HFTs. They modify their
quoted prices by successive submission and cancellation at
high speed typically within seconds; almost 99% of their
submissions were finally canceled without transactions (see
Supplemental Material [35]). With the two-sided quotes
they also play the role of liquidity providers [40,41]
according to the market rule, keeping the balance between
the bid and ask order book. Buy-sell spreads, the difference
between the best bid and ask prices for a single HFT, were
observed to fluctuate around certain time constants (see the
insets for their distributions).
We then report the empirical microscopic law for the

trend-following strategy of individual traders. The bid and
ask quoted prices of the top ith HFT are denoted by bi and
ai (see Supplemental Material [35]). We investigated the
average movement of the trader’s quoted midprice zi ≡
ðbi þ aiÞ=2 between transactions conditional on the pre-
vious market transacted price movement [Fig. 2(d)]. Here

we introduce the tick time T as an integer time incremented
by every transaction. The mean transaction interval is
9.3 sec during this week. Because typical HFTs frequently
modify their price between transactions, we here study
HFTs’ trend following at one-tick precision. For the top 20
HFTs (Fig. 3), we found that the average and variance of
movement ΔziðTÞ≡ ziðT þ 1Þ − ziðTÞ obeyed

hΔziiΔp ≈ ci tanh
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; VΔp½Δzi&≈ σ2i ; ð1Þ

where the conditional average h…iΔp is taken when the last
price change is ΔpðT−1Þ≡pðTÞ−pðT−1Þ and Δzi ≠ 0
(see Supplemental Material [35]) and the conditional
variance is defined by VΔp½Δzi&≡ hðΔzi − hΔziiΔpÞ2iΔp.
Here, pðTÞ is the market transacted price at the T tick, and
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i are characteristic constants unique to the trader

and independent of Δp. Their typical values were found to
be ci ≈ 6.0 tpip, Δp$

i ≈ 7.5 tpip, and σi ≈ 14.5 tpip. Our
finding (1) implies that the reaction of traders is linear for
small trends but saturates for large trends, and quantifies the
collective motion of HFTs. Remarkably, a similar behavior
was reported from a price movement data analysis at one-
month precision [42].
Microscopic model.—Here we introduce a minimal

microscopic model of HFTs incorporating the above
characters. We make four assumptions: (i) The number
of traders is sufficiently large; (ii) traders always quote both
bid and ask prices (for the ith trader, bi and ai) simulta-
neously with a unit volume; (iii) buy-sell spreads are time
constants unique to traders with distribution ρðLÞ. The
trader dynamics are then characterized by the midprice
zi ≡ ðbi þ aiÞ=2; and (iv) trend-following random walks
are assumed in the microscopic dynamics [Figs. 4(a)–4(c)],
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Here we define terminology in this paper. The highest bid and lowest ask quoted prices are called the market best
bid and ask prices (denoted by bM and aM), respectively (see Fig. S1a). The average of the market bid and ask prices
is called the market midprice (denoted by zM). Also, the market transacted price p (or the market price for short)
means the price at which a transaction occurs in the market.

We note a central trading rule regarding the mutual credit lines between traders [1]. All market participants are
required to set credit lines to counterparties in advance, and they cannot transact with each other in the absence of
mutual credit. Therefore, traders sometimes transact at the worse price than the best market price.

B. Definition of the high frequency traders

For this paper, a high frequency trader (HFT) is defined as a trader who submits more than 500 times a day on
average (i.e., more than 2500 times for the week). This definition is similar to that introduced in Ref. [2]. As a few
traders are unwilling to transact and often interrupt orders at the instant of submission, we excluded traders with live
orders of less than 0.5% of the transaction time. With this definition, the number of HFTs was 134 during this week,
whereas the total number of traders was 1015. We note that the total number of traders who submitted limit orders
was 922; the other 93 traders submitted only market orders. We also note that the presence of HFTs has rapidly
grown recently and 87.8% of the total orders were submitted by the HFTs in our data set.

Here we note a regulation on cancellations in this market, which is related to motivating HFTs to play the role of
key liquidity providers (KLPs) [1]. For market stability, all traders are required not to cancel orders frequently; there
is a threshold on the ratio between dealt quote and total number of quotations called the quote fill ratio (QFR). If
the QFR of a trader is lower than a threshold, penalties are imposed on the trader in this market. However, there
is a special rule to lower the threshold. If a trader maintains two-sided quotes continuously for a fixed time interval
(called key liquidity hours), the trader qualifies as a KLP and is subject to a lower threshold QFR. Because HFTs
tend to cancel orders frequently, they are typically KLPs as illustrated in Fig. 2a–c in the main text.

We also note the typical number of HFTs related to snapshots of the order book. We took snapshots of the order
book after every transaction and counted the total number of different trader identifiers (IDs) for both bid and ask
sides. The counting weight for an HFT quoting both sides is 1 and that for an HFT quoting one side is 1/2. We then
plotted the average of the number of trader IDs for both bid and ask sides every two hours in Fig. S1b, showing the
periodic intraday activity pattern of HFTs (i.e., N tends to be small during 20:00–22:00 GMT). The typical number
of HFT was about 35 in our data set with this definition. The number of total volumes quoted by HFTs is typically
about 80. Admittedly, there is room for debate on which number is appropriate for the calibration of the total number
of traders in our model; it remains a topic for future study.

C. Percentage of two-sided quotes

We calculated the percentage of two-sided quotes as follows; when a bid (ask) order is submitted by a trader, we
check whether the corresponding ask (bid) orders exist. We then count the number of two-sided quotes for all traders
at the submission of every order and finally divide it by the total number of submissions.
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corresponding microscopic model of trend-following HFTs.
Starting from their “equations of motion,” Boltzmann-like
and Langevin-like equations are derived for the order-book
and price dynamics. A quantitative agreement is finally
shown with our empirical all findings. Our work opens the
door to systematic descriptions of finance based on micro-
scopic evidence.
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high-frequency FX data between the U.S. dollar (USD)
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study is 0.001 yen, called the tenth pip (tpip). Here we
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according to the market rule, keeping the balance between
the bid and ask order book. Buy-sell spreads, the difference
between the best bid and ask prices for a single HFT, were
observed to fluctuate around certain time constants (see the
insets for their distributions).
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ask quoted prices of the top ith HFT are denoted by bi and
ai (see Supplemental Material [35]). We investigated the
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vious market transacted price movement [Fig. 2(d)]. Here
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hΔziiΔp ≈ ci tanh
Δp
Δp$

i
; VΔp½Δzi&≈ σ2i ; ð1Þ

where the conditional average h…iΔp is taken when the last
price change is ΔpðT−1Þ≡pðTÞ−pðT−1Þ and Δzi ≠ 0
(see Supplemental Material [35]) and the conditional
variance is defined by VΔp½Δzi&≡ hðΔzi − hΔziiΔpÞ2iΔp.
Here, pðTÞ is the market transacted price at the T tick, and
ci, Δp$

i ; σ
2
i are characteristic constants unique to the trader

and independent of Δp. Their typical values were found to
be ci ≈ 6.0 tpip, Δp$

i ≈ 7.5 tpip, and σi ≈ 14.5 tpip. Our
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Model 4: N-body stochastic dealer model + trend-following

16

dz iðtÞ
dt

¼ c tanh
ΔpðtÞ
Δp$ þ σηRi ðtÞ; ð2Þ

with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

z iðtþ 0Þ ¼ z iðtÞ −
Li

2
; z jðtþ 0Þ ¼ z jðtÞ þ

Lj

2
: ð4Þ

Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡

P
iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
N
P

s¼&1

R
dL0ρðL0Þ½JsLL0ðrþsL=2Þ−JsLL0(with JsLL0ðrÞ≡

ðσ2=2Þj∂̃rr0 jϕLL0ðr;r0Þjr−r0¼sðLþL0Þ=2 and j∂̃rr0 jf≡j∂f=∂rjþ
j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”

ϕLL0ðr; r0Þ ≈ ϕLðrÞϕL0ðr0Þ; ð5Þ

we derive the Boltzmann-like equation with collision
integrals for the order book,
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with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],
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; z jðtþ 0Þ ¼ z jðtÞ þ
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Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡

P
iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
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j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”

ϕLL0ðr; r0Þ ≈ ϕLðrÞϕL0ðr0Þ; ð5Þ

we derive the Boltzmann-like equation with collision
integrals for the order book,
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with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

z iðtþ 0Þ ¼ z iðtÞ −
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Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡

P
iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
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j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”
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we derive the Boltzmann-like equation with collision
integrals for the order book,
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with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as
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Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡
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iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
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dz iðtÞ
dt

¼ c tanh
ΔpðtÞ
Δp$ þ σηRi ðtÞ; ð2Þ

with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

z iðtþ 0Þ ¼ z iðtÞ −
Li

2
; z jðtþ 0Þ ¼ z jðtÞ þ

Lj

2
: ð4Þ

Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡

P
iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
N
P

s¼&1

R
dL0ρðL0Þ½JsLL0ðrþsL=2Þ−JsLL0(with JsLL0ðrÞ≡

ðσ2=2Þj∂̃rr0 jϕLL0ðr;r0Þjr−r0¼sðLþL0Þ=2 and j∂̃rr0 jf≡j∂f=∂rjþ
j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”

ϕLL0ðr; r0Þ ≈ ϕLðrÞϕL0ðr0Þ; ð5Þ

we derive the Boltzmann-like equation with collision
integrals for the order book,

∂ϕL

∂t ≈
σ2

2
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Z
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dz iðtÞ
dt

¼ c tanh
ΔpðtÞ
Δp$ þ σηRi ðtÞ; ð2Þ

with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

z iðtþ 0Þ ¼ z iðtÞ −
Li

2
; z jðtþ 0Þ ¼ z jðtÞ þ
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Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡

P
iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
N
P

s¼&1

R
dL0ρðL0Þ½JsLL0ðrþsL=2Þ−JsLL0(with JsLL0ðrÞ≡

ðσ2=2Þj∂̃rr0 jϕLL0ðr;r0Þjr−r0¼sðLþL0Þ=2 and j∂̃rr0 jf≡j∂f=∂rjþ
j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”

ϕLL0ðr; r0Þ ≈ ϕLðrÞϕL0ðr0Þ; ð5Þ

we derive the Boltzmann-like equation with collision
integrals for the order book,
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ing to infinity. With these minor revisions an example time
sequence produced by model 2 is plotted together with one
produced by model 1 in Fig. 7. Comparing these two se-
quences, we observe that model 2 can reproduce the cluster-
ing property quite well. Moreover, the lower interval se-
quence looks similar to the real sequence shown in Fig. 5.
Actually, the distribution of transaction intervals arising from
model 2 is now very close to that of the actual interval dis-
tribution as shown in Fig. 8.

C. Model 3

In this section we shift our attention from transaction in-
tervals to price changes. We know that the price change dis-
tribution of model 1 is characterized by an exponential dis-
tribution while that of the real market is often characterized
by a power law. It has been established that such power-law
distributions can be derived by introducing the effect of
trend-following prediction !24". This effect can be intro-
duced to our stochastic dealer model by simply adding a
further term, d#!P$M!t, which is defined as follows:

pi%t + !t& = pi%t& + d#!P$M!t + cfi%t& ,

f i%t& = '+ !p %prob. 1/2&
− !p %prob. 1/2& ( i = 1,2, %15&

where

#!P$M =
2

M%M + 1& )
k=0

M−1

%M − k&!P%n − k& . %16&

Here !P%n&= P%n&− P%n −1& is the price change at the nth
tick. The new term, #!P$M, is a kind of moving average of
price changes for M ticks with weights that decay linearly.
The parameter d in Eq. %15& is an important parameter that
governs the dealers’ strategy. A dealer with positive d is a
trend follower who predicts upcoming market prices propor-
tional to the latest price slope. On the other hand, a dealer
with a negative d is called a contrarian who forecasts that
upcoming market prices will go against the trend and that the

present market price is close to a local maximum or mini-
mum.

Adding this effect, Eq. %2& in model 1 is modified as

D%t + !t& = D%t& + *+ 2c!p %prob. 1/4&
" 0 %prob. 1/2&
− 2c!p %prob. 1/4& ,

+ %17a&

!G%t + !t& = !G%t& + d#!P$M!t + *+ c!p %prob. 1/4&
" 0 %prob. 1/2&
− c!p %prob. 1/4& .

+
%17b&

In the two-dimensional random-walk representation the ini-
tial conditions and the boundary conditions are invariant;
however, we have a horizontal flow proportional to d#!P$M
as shown in Fig. 9. The existence of this flow implies that the
distance of the absorption point from the origin is greater
than that of the original model 1. As the vertical motions are
completely identical to the original model 1, the transaction
intervals are also identical. So the absorbed point on the
horizontal axis is shifted by I%n&d#!P$M. The strength of the
flow depends on the parameter d and the latest price changes.

In this revised model the transaction intervals are identical
to those of model 1 because Eq. %17a& is the same as Eq. %2a&,
while the market price change is described by the following
equation:

!P%n + 1& = I%n&d#!P$M + F%n& . %18&

Here, the first term of the right-hand side is the distance
covered by the flow; d#!P$M gives the intensity of the flow
and I%n& is the transaction interval. The second term is iden-
tical to the price change of model 1. From the results already
obtained for model 1 it is clear that both I%n& and F%n& are
random variables characterized by exponential functions, so
Eq. %18& follows a random multiplicative process. We know
that a time series which is produced by a random multipli-
cative process generally follows a power law if the process
satisfies a stationary condition. In particular, in the case that
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dz iðtÞ
dt

¼ c tanh
ΔpðtÞ
Δp$ þ σηRi ðtÞ; ð2Þ

with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

z iðtþ 0Þ ¼ z iðtÞ −
Li

2
; z jðtþ 0Þ ¼ z jðtÞ þ

Lj

2
: ð4Þ

Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡

P
iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
N
P

s¼&1

R
dL0ρðL0Þ½JsLL0ðrþsL=2Þ−JsLL0(with JsLL0ðrÞ≡

ðσ2=2Þj∂̃rr0 jϕLL0ðr;r0Þjr−r0¼sðLþL0Þ=2 and j∂̃rr0 jf≡j∂f=∂rjþ
j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”

ϕLL0ðr; r0Þ ≈ ϕLðrÞϕL0ðr0Þ; ð5Þ

we derive the Boltzmann-like equation with collision
integrals for the order book,
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2. Microscopic model

Trend following R.W. Corrective motion in order book

dz iðtÞ
dt

¼ c tanh
ΔpðtÞ
Δp$ þ σηRi ðtÞ; ð2Þ

with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

z iðtþ 0Þ ¼ z iðtÞ −
Li

2
; z jðtþ 0Þ ¼ z jðtÞ þ

Lj

2
: ð4Þ

Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡

P
iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
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j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”

ϕLL0ðr; r0Þ ≈ ϕLðrÞϕL0ðr0Þ; ð5Þ

we derive the Boltzmann-like equation with collision
integrals for the order book,
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3. Kinetic formulation

5

FIG. S3: Relative price ri ≡ zi−zc.m. from the CM. (a) The quoted bid and ask prices (bi, ai) of an individual trader are plotted
with the CM and market price (zc.m., p). (b) The trend-following effect is removed in the moving frame ri. The trajectories
were obtained from a Monte Carlo simulation of the microscopic model (S1) with time unit L∗2/σ2, discretized time step
∆t = 4.0× 10−4L∗2/σ2, L∗ = 15 tpip, ∆p∗ = 6.75 tpip, ∆z∗ = 3.6 tpip, and N = 25.

with a standard Gaussian random number ηRi according to our empirical finding (1) in the main text. Transaction
rule is also assumed the same as the continuous model (S1). Here, the infinitesimal time step dt is different from the
mean-cancellation interval ∆tcan. A schematic trajectory described by this Poisson dynamics is illustrated in Fig. S2.
The continuous model (S1) is obtained in the high-frequent cancellation limit λ → ∞ for the discrete model (S3).
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Remarkably, trend following only appears in the dynamics of the CM, but does not appear in that of the relative price.
This is natural because trend following induces a collective behavior of traders, and can be absorbed into the dynamics
of the CM. Furthermore, the contribution of ξ is much smaller than that of σηRi and ηTi for N → ∞: |ξ| ≪ |σηRi +ηTi |.
In the moving frame of the CM, the dynamics of the relative price ri is thus simplified and approximately obeys the
following dynamical equation:

dri
dt

≈ σηRi + ηTi . (S6)

D. BBGKY Hierarchical equation for two-body problem: N = 2

Before deriving the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchical equation for N ≫ 1, we first
consider the two-body system of traders to specify the collision integrals. Extension to the many-body problem will
be studied in the next subsection. Let us denote the relative midprices of the first and second traders by r1 and r2
with constant spreads L1 and L2. The dynamics is given by
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= σηR1;ε +
∞∑

k=1
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with jump sizes ∆r1, ∆r2 and k-th transaction time τk. Here, ηi;ε is the colored Gaussian noise satisfying
⟨ηRi;ε(t)ηRj;ε(s)⟩ = δije−|t−s|/ε/2ε for i, j = 1, 2. Later, we shall take the ε → 0 limit, whereby colored Gaussian
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FIG. S2: Continuous trend-following random walk model (S1) can be reformulated as the Poisson price modification process (S3)
with high-frequent cancellation rate λ → ∞. (a) A typical trajectory of the Poisson price modification process (S3) with finite
cancellation rate λ. Here the mean interval between price modification by a single trader is set to be ∆tcan ≡ 1/λ = τ∗/4
with the mean transaction interval τ∗. Other parameters are given by L∗ = 15 tpip, ∆p∗ = 6.75 tpip, ∆z∗ = 3.6 tpip, and
N = 25. (b) A typical trajectory of the Poisson price modification process (S3) with high cancellation rate λ = 400/τ∗, where
the Poisson model (S3) asymptotically reduces to the continuous model (S1) for λ → ∞.

III. THEORETICAL ANALYSIS

A. Model dynamics

In the main text, we explained the model dynamics as trend-following random walks (2) with jump rules (3) and (4).
These dynamics can be represented within the framework of Markovian stochastic processes using the δ functions.
The stochastic dynamics can be written as

dzi
dt

= c tanh
∆p

∆p∗
+ σηRi + ηTi , ηTi ≡

∞∑

k=1

j ̸=i∑

j

∆zijδ(t− τk;ij),

dp

dt
=

∞∑

k=1

i<j∑

i,j

(ppost − p)δ(t− τk;ij),
d∆p

dt
=

∞∑

k=1

i<j∑

i,j

(∆ppost −∆p)δ(t− τk;ij),

(S1)

where we have used the Itô convention. Here, τk;ij is the k-th collision time; jump size ∆zij between traders i and j,
post-collisional price ppost, and price movement ∆ppost are defined by

|zi(τk;ij)− zj(τk;ij)| =
Li + Lj

2
=⇒ ∆zij = −Li

2
sgn(zi − zj), ppost = zi +∆zij , ∆ppost ≡ zi +∆zij − p (S2)

with signature function sgn(x) defined by sgn(x) = x/|x| for x ̸= 0 and sgn(0) = 0. Remarkably, the jump rule
Eq. (S2) corresponds to the contact condition and momentum exchange in the conventional kinetic theory. In the
following, we present effective descriptions of this model for mesoscopic and macroscopic hierarchies.

B. Note on a Poisson price modification process

Since the Gaussian noise can be obtained by taking the high-frequent small jump limit for Poisson noises [3], the
model (S1) can be reformulated as a Poisson price modification process with high-frequent cancellation rate. Here,
let us focus on the quoted price dynamics for HFTs in the absence of transactions. As shown in Fig. 2a–c in the main
text, HFTs tend to frequently and continuously modify their price by successive order cancellation and submission,
possibly due to the market rule (i.e., they are required to maintain the continuous two-sided quote for a fixed time
interval [1]). On the basis of these characters, we can consider a Poisson cancellation model corresponding to the
model (S1). Let us introduce the order cancellation rate λ, which gives the cancellation probability during [t, t+ dt]
as λdt. The mean-cancellation interval is characterized by ∆tcan ≡ 1/λ. After cancellation, we assume that HFTs
instantaneously requote their price to maintain continuous limit orders. In the absence of transaction, the requoted
price is assumed to be described by a discrete version of Eq. (S1) as

zi(t+ dt)− zi(t) =

{
0 (Probability = 1− λdt)

c∆tcan tanh
∆p
∆p∗ + σ

√
∆tcanηRi (Probability = λdt)

(S3)
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FIG. S3: Relative price ri ≡ zi−zc.m. from the CM. (a) The quoted bid and ask prices (bi, ai) of an individual trader are plotted
with the CM and market price (zc.m., p). (b) The trend-following effect is removed in the moving frame ri. The trajectories
were obtained from a Monte Carlo simulation of the microscopic model (S1) with time unit L∗2/σ2, discretized time step
∆t = 4.0× 10−4L∗2/σ2, L∗ = 15 tpip, ∆p∗ = 6.75 tpip, ∆z∗ = 3.6 tpip, and N = 25.

with a standard Gaussian random number ηRi according to our empirical finding (1) in the main text. Transaction
rule is also assumed the same as the continuous model (S1). Here, the infinitesimal time step dt is different from the
mean-cancellation interval ∆tcan. A schematic trajectory described by this Poisson dynamics is illustrated in Fig. S2.
The continuous model (S1) is obtained in the high-frequent cancellation limit λ → ∞ for the discrete model (S3).
The HFTs’ nature on high-frequent price modifications is thus reflected in the continuous model (S1).

C. Introduction of the center of mass and the corresponding relative price

We here introduce the center of mass (CM) and the corresponding relative price (see Fig. S3 for a schematic):

zc.m. ≡
1

N
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zi, ri ≡ zi − zc.m.. (S4)

The dynamics of the CM and the relative price is given by
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dt
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(
σηRj + ηTj

)
. (S5)

Remarkably, trend following only appears in the dynamics of the CM, but does not appear in that of the relative price.
This is natural because trend following induces a collective behavior of traders, and can be absorbed into the dynamics
of the CM. Furthermore, the contribution of ξ is much smaller than that of σηRi and ηTi for N → ∞: |ξ| ≪ |σηRi +ηTi |.
In the moving frame of the CM, the dynamics of the relative price ri is thus simplified and approximately obeys the
following dynamical equation:

dri
dt

≈ σηRi + ηTi . (S6)

D. BBGKY Hierarchical equation for two-body problem: N = 2

Before deriving the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchical equation for N ≫ 1, we first
consider the two-body system of traders to specify the collision integrals. Extension to the many-body problem will
be studied in the next subsection. Let us denote the relative midprices of the first and second traders by r1 and r2
with constant spreads L1 and L2. The dynamics is given by

dr1
dt

= σηR1;ε +
∞∑

k=1

∆r1δ(t− τk),
dr2
dt

= σηR2;ε +
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k=1

∆r2δ(t− τk) (S7)

with jump sizes ∆r1, ∆r2 and k-th transaction time τk. Here, ηi;ε is the colored Gaussian noise satisfying
⟨ηRi;ε(t)ηRj;ε(s)⟩ = δije−|t−s|/ε/2ε for i, j = 1, 2. Later, we shall take the ε → 0 limit, whereby colored Gaussian
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This is natural because trend following induces a collective behavior of traders, and can be absorbed into the dynamics
of the CM. Furthermore, the contribution of ξ is much smaller than that of σηRi and ηTi for N → ∞: |ξ| ≪ |σηRi +ηTi |.
In the moving frame of the CM, the dynamics of the relative price ri is thus simplified and approximately obeys the
following dynamical equation:

dri
dt

≈ σηRi + ηTi . (S6)

D. BBGKY Hierarchical equation for two-body problem: N = 2

Before deriving the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchical equation for N ≫ 1, we first
consider the two-body system of traders to specify the collision integrals. Extension to the many-body problem will
be studied in the next subsection. Let us denote the relative midprices of the first and second traders by r1 and r2
with constant spreads L1 and L2. The dynamics is given by

dr1
dt

= σηR1;ε +
∞∑

k=1

∆r1δ(t− τk),
dr2
dt

= σηR2;ε +
∞∑

k=1

∆r2δ(t− τk) (S7)

with jump sizes ∆r1, ∆r2 and k-th transaction time τk. Here, ηi;ε is the colored Gaussian noise satisfying
⟨ηRi;ε(t)ηRj;ε(s)⟩ = δije−|t−s|/ε/2ε for i, j = 1, 2. Later, we shall take the ε → 0 limit, whereby colored Gaussian

Define new variables
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Collision & Hopping

FIG. S9: Schematic of Brownian motion confined by the hopping barriers at r = ±L/2. When the Brownian particle collides
with the hopping barriers, the particle hops to the origin r = 0.

the relation r(τ±k ) = ±L/2. In a parallel calculation to that in Sec. IIID, the dynamical equation for the probability
distribution function P (r) is given by

∂P (r)

∂t
=
σ2

2

∂2

∂r2
P (r) +

∑

s=±1

[Js(r − sL/2)− Js(r)], Js(r) =
σ2

2
δ(r + sL/2)|∂sP (r)|. (S37)

The steady solution is then given by the tent function, PSS(r) ≡ limt→∞ P (r) = ψL(r), which is the same as the
mean-field solution (S22) for N → ∞. This implies that the mean-field description corresponds to Brownian motion
confined by the hopping barriers in the limit N → ∞.

From the above picture, we can derive Eq. (S26) for the mean transaction interval asymptotically in terms of N .
Because a single particle in our model behaves as the Brownian motion confined by the hopping barriers for N → ∞,
the mean transaction interval for a single particle can be derived by considering the survival rate problem for the
model (S36). According to Ref. [9], the mean transaction interval is given by L2/4σ2 for a single particle. We next
derive the mean transaction interval for the whole system. A count of the number of collisions nL for the spread L
during the time interval T yields nL = T/(L2/4σ2), when T is sufficiently large. The total number of collisions ntot

is then given by

ntot =
N∑

i=1

T

L2
i /4σ

2
≈ N

∫
dLρ(L)T

L2/4σ2
, (S38)

where there are duplicate counts because any transaction occurs as a binary collision. Considering the duplicate
counts, the mean transaction interval τ∗ for the whole system is given by τ∗ = T/(ntot/2), which implies Eq. (S26).

B. Transaction interval distribution

The phenomenological estimation of the cumulative distribution for transaction interval (S27) is presented here.
Let us assume that the arrival-time intervals of a bidder and an asker at the center of mass obey the Poisson statistics:

PA(≥ τA) =

∫ ∞

τA

PA(τ
′
A)dτ

′
A = e−τA/a, PB(≥ τB) =

∫ ∞

τB

PB(τ
′
B)dτ

′
B = e−τB/a (S39)

with the characteristic time interval a. PA(τA) (PB(τB)) and PA(≥ τA) (PB(≥ τB)) are the PDFs and CDFs of arrival
time intervals for an asker (a bidder), respectively. We also assume that the transaction occurs when both bidder and
asker arrive at the center of mass. This picture implies that the transaction interval τ is approximately given by

τ ≈ max{τA, τB} =⇒ P (≥ τ) = 1− (1− e−τ/a)2, (S40)

where we have used a formula for the order statistics [10]. Considering the consistency between Eq. (S40) and the
mean transaction interval (S26), we obtain the self-consistent condition τ∗ = 3a/2. Equation (S27) then follows.
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where Js
12(r1) is the transaction probability per unit time as bidder (s = +1) or asker (s = −1). The first and second

terms on the right-hand side account for the self-diffusion and collision terms, respectively. This is a lowest-order
BBGKY hierarchical equation for the special case of N = 2. Remarkably, the collision term has a quite similar
mathematical structure to the collision integral in the conventional Boltzmann equation.

E. BBGKY hierarchical equation for many-body problem: N ≫ 1

We have derived the hierarchical equation for the one-body PDF for the special case N = 2. Here we extend the
hierarchical equation for the many-body problem with N ≫ 1. We first assume that the number of traders N is
sufficiently large that the spread distribution ρ(L) can be approximated as a continuous function. The one-body and
two-body PDFs conditional on buy-sell spread L and L′ are denoted by φL(r) and φLL′(r, r′), respectively. We note
the relations Pi(ri) = φLi(ri) and Pij(ri, rj) = φLiLj (ri, rj) hold for the one-body and two-body PDFs Pi(ri) and
Pij(ri, rj) for the traders i and j, considering the symmetry between traders. Within the spirit of the Boltzmann
equation, the dynamical equation for the one-body distribution φL(r) can be decomposed into two parts:

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+ C(φLL′) (S17)

with the self-diffusion term (σ2/2)(∂2φL/∂r2) and the collision integral C(φLL′). By extending the collision term in
Eq. (S16) for large N ≫ 1, we can specify the collision integral as

C(φLL′) = N
∑

s=±1

∫
dL′ρ(L′) [Js

LL′(r + sL/2)− Js
LL′(r)] , Js

LL′(r) =
σ∗2

2
|∂̃rr′ |φLL′(r, r′)

∣∣∣∣
r−r′=s(L+L′)/2

(S18)

with the collision probability per unit time as bidder (s = +1) or asker (s = −1) against a trader with spread L′. This
is the Boltzmann-like equation, Eq. (6) in the main text. We note that this BBGKY hierarchical equation can be
systematically derived via the pseudo-Liouville equation. The derivation will be given in another technical paper [5].

F. Boltzmann-like equation for finance

We next derive a closed equation for the one-body distribution function φL by assuming a mean-field approximation.
Let us truncate the two-body correlation (i.e., molecular chaos in kinetic theory),

φLL′(r, r′) ≈ φL(r)φL′(r′). (S19)

A closed mean-field equation for the one-body distribution φL is thereby obtained,

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+N

∑

s=±1

∫
dL′ρ(L′)

[
J̃s
LL′(r + sL/2)− J̃s

LL′(r)
]

(S20)

with the mean-field collision probability per unit time as bidder (s = +1) or asker (s = −1)

J̃s
LL′(r) =

σ2

2
|∂̃rr′ | {φL(r)φL′(r′)}

∣∣∣∣
r−r′=s(L+L′)/2

. (S21)

Equation (S20) is a closed equation for the one-body distribution function, and corresponds to the Boltzmann equation
in molecular kinetic theory.

Equation (S20) can be analytically solved for N → ∞, and the steady solution ψL(r) is given by the tent function,

ψL(r) ≡ lim
t→∞

lim
N→0

φL(r; t) =
4

L2
max

{
L

2
− |r|, 0

}
. (S22)

Here, a technicality on the appropriate boundary condition will be summarized in another technical paper [5]. Note
that the tent function (S22) for the traders’ midprice order book implies the tent functions for both bid and ask order
books in shifted coordinates (see Fig. S4 for a schematic). The average order-book profile for the ask side fA(r) is
then given by convolution with the tent function,

fA(r) =

∫
dLρ(L)ψL(r − L/2). (S23)
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where Js
12(r1) is the transaction probability per unit time as bidder (s = +1) or asker (s = −1). The first and second

terms on the right-hand side account for the self-diffusion and collision terms, respectively. This is a lowest-order
BBGKY hierarchical equation for the special case of N = 2. Remarkably, the collision term has a quite similar
mathematical structure to the collision integral in the conventional Boltzmann equation.

E. BBGKY hierarchical equation for many-body problem: N ≫ 1

We have derived the hierarchical equation for the one-body PDF for the special case N = 2. Here we extend the
hierarchical equation for the many-body problem with N ≫ 1. We first assume that the number of traders N is
sufficiently large that the spread distribution ρ(L) can be approximated as a continuous function. The one-body and
two-body PDFs conditional on buy-sell spread L and L′ are denoted by φL(r) and φLL′(r, r′), respectively. We note
the relations Pi(ri) = φLi(ri) and Pij(ri, rj) = φLiLj (ri, rj) hold for the one-body and two-body PDFs Pi(ri) and
Pij(ri, rj) for the traders i and j, considering the symmetry between traders. Within the spirit of the Boltzmann
equation, the dynamical equation for the one-body distribution φL(r) can be decomposed into two parts:

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+ C(φLL′) (S17)

with the self-diffusion term (σ2/2)(∂2φL/∂r2) and the collision integral C(φLL′). By extending the collision term in
Eq. (S16) for large N ≫ 1, we can specify the collision integral as

C(φLL′) = N
∑

s=±1

∫
dL′ρ(L′) [Js

LL′(r + sL/2)− Js
LL′(r)] , Js

LL′(r) =
σ∗2

2
|∂̃rr′ |φLL′(r, r′)

∣∣∣∣
r−r′=s(L+L′)/2

(S18)

with the collision probability per unit time as bidder (s = +1) or asker (s = −1) against a trader with spread L′. This
is the Boltzmann-like equation, Eq. (6) in the main text. We note that this BBGKY hierarchical equation can be
systematically derived via the pseudo-Liouville equation. The derivation will be given in another technical paper [5].

F. Boltzmann-like equation for finance

We next derive a closed equation for the one-body distribution function φL by assuming a mean-field approximation.
Let us truncate the two-body correlation (i.e., molecular chaos in kinetic theory),

φLL′(r, r′) ≈ φL(r)φL′(r′). (S19)

A closed mean-field equation for the one-body distribution φL is thereby obtained,

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+N

∑

s=±1

∫
dL′ρ(L′)

[
J̃s
LL′(r + sL/2)− J̃s

LL′(r)
]

(S20)

with the mean-field collision probability per unit time as bidder (s = +1) or asker (s = −1)

J̃s
LL′(r) =

σ2

2
|∂̃rr′ | {φL(r)φL′(r′)}

∣∣∣∣
r−r′=s(L+L′)/2

. (S21)

Equation (S20) is a closed equation for the one-body distribution function, and corresponds to the Boltzmann equation
in molecular kinetic theory.

Equation (S20) can be analytically solved for N → ∞, and the steady solution ψL(r) is given by the tent function,

ψL(r) ≡ lim
t→∞

lim
N→0

φL(r; t) =
4

L2
max

{
L

2
− |r|, 0

}
. (S22)

Here, a technicality on the appropriate boundary condition will be summarized in another technical paper [5]. Note
that the tent function (S22) for the traders’ midprice order book implies the tent functions for both bid and ask order
books in shifted coordinates (see Fig. S4 for a schematic). The average order-book profile for the ask side fA(r) is
then given by convolution with the tent function,

fA(r) =

∫
dLρ(L)ψL(r − L/2). (S23)
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where Js
12(r1) is the transaction probability per unit time as bidder (s = +1) or asker (s = −1). The first and second

terms on the right-hand side account for the self-diffusion and collision terms, respectively. This is a lowest-order
BBGKY hierarchical equation for the special case of N = 2. Remarkably, the collision term has a quite similar
mathematical structure to the collision integral in the conventional Boltzmann equation.

E. BBGKY hierarchical equation for many-body problem: N ≫ 1

We have derived the hierarchical equation for the one-body PDF for the special case N = 2. Here we extend the
hierarchical equation for the many-body problem with N ≫ 1. We first assume that the number of traders N is
sufficiently large that the spread distribution ρ(L) can be approximated as a continuous function. The one-body and
two-body PDFs conditional on buy-sell spread L and L′ are denoted by φL(r) and φLL′(r, r′), respectively. We note
the relations Pi(ri) = φLi(ri) and Pij(ri, rj) = φLiLj (ri, rj) hold for the one-body and two-body PDFs Pi(ri) and
Pij(ri, rj) for the traders i and j, considering the symmetry between traders. Within the spirit of the Boltzmann
equation, the dynamical equation for the one-body distribution φL(r) can be decomposed into two parts:

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+ C(φLL′) (S17)

with the self-diffusion term (σ2/2)(∂2φL/∂r2) and the collision integral C(φLL′). By extending the collision term in
Eq. (S16) for large N ≫ 1, we can specify the collision integral as

C(φLL′) = N
∑

s=±1

∫
dL′ρ(L′) [Js

LL′(r + sL/2)− Js
LL′(r)] , Js

LL′(r) =
σ∗2

2
|∂̃rr′ |φLL′(r, r′)

∣∣∣∣
r−r′=s(L+L′)/2

(S18)

with the collision probability per unit time as bidder (s = +1) or asker (s = −1) against a trader with spread L′. This
is the Boltzmann-like equation, Eq. (6) in the main text. We note that this BBGKY hierarchical equation can be
systematically derived via the pseudo-Liouville equation. The derivation will be given in another technical paper [5].

F. Boltzmann-like equation for finance

We next derive a closed equation for the one-body distribution function φL by assuming a mean-field approximation.
Let us truncate the two-body correlation (i.e., molecular chaos in kinetic theory),

φLL′(r, r′) ≈ φL(r)φL′(r′). (S19)

A closed mean-field equation for the one-body distribution φL is thereby obtained,

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+N

∑

s=±1

∫
dL′ρ(L′)

[
J̃s
LL′(r + sL/2)− J̃s

LL′(r)
]

(S20)

with the mean-field collision probability per unit time as bidder (s = +1) or asker (s = −1)

J̃s
LL′(r) =

σ2

2
|∂̃rr′ | {φL(r)φL′(r′)}

∣∣∣∣
r−r′=s(L+L′)/2

. (S21)

Equation (S20) is a closed equation for the one-body distribution function, and corresponds to the Boltzmann equation
in molecular kinetic theory.

Equation (S20) can be analytically solved for N → ∞, and the steady solution ψL(r) is given by the tent function,

ψL(r) ≡ lim
t→∞

lim
N→0

φL(r; t) =
4

L2
max

{
L

2
− |r|, 0

}
. (S22)

Here, a technicality on the appropriate boundary condition will be summarized in another technical paper [5]. Note
that the tent function (S22) for the traders’ midprice order book implies the tent functions for both bid and ask order
books in shifted coordinates (see Fig. S4 for a schematic). The average order-book profile for the ask side fA(r) is
then given by convolution with the tent function,

fA(r) =

∫
dLρ(L)ψL(r − L/2). (S23)
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where Js
12(r1) is the transaction probability per unit time as bidder (s = +1) or asker (s = −1). The first and second

terms on the right-hand side account for the self-diffusion and collision terms, respectively. This is a lowest-order
BBGKY hierarchical equation for the special case of N = 2. Remarkably, the collision term has a quite similar
mathematical structure to the collision integral in the conventional Boltzmann equation.

E. BBGKY hierarchical equation for many-body problem: N ≫ 1

We have derived the hierarchical equation for the one-body PDF for the special case N = 2. Here we extend the
hierarchical equation for the many-body problem with N ≫ 1. We first assume that the number of traders N is
sufficiently large that the spread distribution ρ(L) can be approximated as a continuous function. The one-body and
two-body PDFs conditional on buy-sell spread L and L′ are denoted by φL(r) and φLL′(r, r′), respectively. We note
the relations Pi(ri) = φLi(ri) and Pij(ri, rj) = φLiLj (ri, rj) hold for the one-body and two-body PDFs Pi(ri) and
Pij(ri, rj) for the traders i and j, considering the symmetry between traders. Within the spirit of the Boltzmann
equation, the dynamical equation for the one-body distribution φL(r) can be decomposed into two parts:

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+ C(φLL′) (S17)

with the self-diffusion term (σ2/2)(∂2φL/∂r2) and the collision integral C(φLL′). By extending the collision term in
Eq. (S16) for large N ≫ 1, we can specify the collision integral as

C(φLL′) = N
∑

s=±1

∫
dL′ρ(L′) [Js

LL′(r + sL/2)− Js
LL′(r)] , Js

LL′(r) =
σ∗2

2
|∂̃rr′ |φLL′(r, r′)

∣∣∣∣
r−r′=s(L+L′)/2

(S18)

with the collision probability per unit time as bidder (s = +1) or asker (s = −1) against a trader with spread L′. This
is the Boltzmann-like equation, Eq. (6) in the main text. We note that this BBGKY hierarchical equation can be
systematically derived via the pseudo-Liouville equation. The derivation will be given in another technical paper [5].

F. Boltzmann-like equation for finance

We next derive a closed equation for the one-body distribution function φL by assuming a mean-field approximation.
Let us truncate the two-body correlation (i.e., molecular chaos in kinetic theory),

φLL′(r, r′) ≈ φL(r)φL′(r′). (S19)

A closed mean-field equation for the one-body distribution φL is thereby obtained,

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+N

∑

s=±1

∫
dL′ρ(L′)

[
J̃s
LL′(r + sL/2)− J̃s

LL′(r)
]

(S20)

with the mean-field collision probability per unit time as bidder (s = +1) or asker (s = −1)

J̃s
LL′(r) =

σ2

2
|∂̃rr′ | {φL(r)φL′(r′)}

∣∣∣∣
r−r′=s(L+L′)/2

. (S21)

Equation (S20) is a closed equation for the one-body distribution function, and corresponds to the Boltzmann equation
in molecular kinetic theory.

Equation (S20) can be analytically solved for N → ∞, and the steady solution ψL(r) is given by the tent function,

ψL(r) ≡ lim
t→∞

lim
N→0

φL(r; t) =
4

L2
max

{
L

2
− |r|, 0

}
. (S22)

Here, a technicality on the appropriate boundary condition will be summarized in another technical paper [5]. Note
that the tent function (S22) for the traders’ midprice order book implies the tent functions for both bid and ask order
books in shifted coordinates (see Fig. S4 for a schematic). The average order-book profile for the ask side fA(r) is
then given by convolution with the tent function,

fA(r) =

∫
dLρ(L)ψL(r − L/2). (S23)
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where Js
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terms on the right-hand side account for the self-diffusion and collision terms, respectively. This is a lowest-order
BBGKY hierarchical equation for the special case of N = 2. Remarkably, the collision term has a quite similar
mathematical structure to the collision integral in the conventional Boltzmann equation.

E. BBGKY hierarchical equation for many-body problem: N ≫ 1

We have derived the hierarchical equation for the one-body PDF for the special case N = 2. Here we extend the
hierarchical equation for the many-body problem with N ≫ 1. We first assume that the number of traders N is
sufficiently large that the spread distribution ρ(L) can be approximated as a continuous function. The one-body and
two-body PDFs conditional on buy-sell spread L and L′ are denoted by φL(r) and φLL′(r, r′), respectively. We note
the relations Pi(ri) = φLi(ri) and Pij(ri, rj) = φLiLj (ri, rj) hold for the one-body and two-body PDFs Pi(ri) and
Pij(ri, rj) for the traders i and j, considering the symmetry between traders. Within the spirit of the Boltzmann
equation, the dynamical equation for the one-body distribution φL(r) can be decomposed into two parts:
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with the self-diffusion term (σ2/2)(∂2φL/∂r2) and the collision integral C(φLL′). By extending the collision term in
Eq. (S16) for large N ≫ 1, we can specify the collision integral as
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∫
dL′ρ(L′) [Js
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∣∣∣∣
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(S18)

with the collision probability per unit time as bidder (s = +1) or asker (s = −1) against a trader with spread L′. This
is the Boltzmann-like equation, Eq. (6) in the main text. We note that this BBGKY hierarchical equation can be
systematically derived via the pseudo-Liouville equation. The derivation will be given in another technical paper [5].

F. Boltzmann-like equation for finance

We next derive a closed equation for the one-body distribution function φL by assuming a mean-field approximation.
Let us truncate the two-body correlation (i.e., molecular chaos in kinetic theory),

φLL′(r, r′) ≈ φL(r)φL′(r′). (S19)

A closed mean-field equation for the one-body distribution φL is thereby obtained,

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+N

∑

s=±1

∫
dL′ρ(L′)

[
J̃s
LL′(r + sL/2)− J̃s

LL′(r)
]
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with the mean-field collision probability per unit time as bidder (s = +1) or asker (s = −1)

J̃s
LL′(r) =
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2
|∂̃rr′ | {φL(r)φL′(r′)}

∣∣∣∣
r−r′=s(L+L′)/2

. (S21)

Equation (S20) is a closed equation for the one-body distribution function, and corresponds to the Boltzmann equation
in molecular kinetic theory.

Equation (S20) can be analytically solved for N → ∞, and the steady solution ψL(r) is given by the tent function,

ψL(r) ≡ lim
t→∞

lim
N→0

φL(r; t) =
4

L2
max

{
L

2
− |r|, 0

}
. (S22)

Here, a technicality on the appropriate boundary condition will be summarized in another technical paper [5]. Note
that the tent function (S22) for the traders’ midprice order book implies the tent functions for both bid and ask order
books in shifted coordinates (see Fig. S4 for a schematic). The average order-book profile for the ask side fA(r) is
then given by convolution with the tent function,

fA(r) =

∫
dLρ(L)ψL(r − L/2). (S23)
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where Js
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BBGKY hierarchical equation for the special case of N = 2. Remarkably, the collision term has a quite similar
mathematical structure to the collision integral in the conventional Boltzmann equation.

E. BBGKY hierarchical equation for many-body problem: N ≫ 1

We have derived the hierarchical equation for the one-body PDF for the special case N = 2. Here we extend the
hierarchical equation for the many-body problem with N ≫ 1. We first assume that the number of traders N is
sufficiently large that the spread distribution ρ(L) can be approximated as a continuous function. The one-body and
two-body PDFs conditional on buy-sell spread L and L′ are denoted by φL(r) and φLL′(r, r′), respectively. We note
the relations Pi(ri) = φLi(ri) and Pij(ri, rj) = φLiLj (ri, rj) hold for the one-body and two-body PDFs Pi(ri) and
Pij(ri, rj) for the traders i and j, considering the symmetry between traders. Within the spirit of the Boltzmann
equation, the dynamical equation for the one-body distribution φL(r) can be decomposed into two parts:

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+ C(φLL′) (S17)

with the self-diffusion term (σ2/2)(∂2φL/∂r2) and the collision integral C(φLL′). By extending the collision term in
Eq. (S16) for large N ≫ 1, we can specify the collision integral as

C(φLL′) = N
∑

s=±1

∫
dL′ρ(L′) [Js

LL′(r + sL/2)− Js
LL′(r)] , Js

LL′(r) =
σ∗2

2
|∂̃rr′ |φLL′(r, r′)

∣∣∣∣
r−r′=s(L+L′)/2

(S18)

with the collision probability per unit time as bidder (s = +1) or asker (s = −1) against a trader with spread L′. This
is the Boltzmann-like equation, Eq. (6) in the main text. We note that this BBGKY hierarchical equation can be
systematically derived via the pseudo-Liouville equation. The derivation will be given in another technical paper [5].

F. Boltzmann-like equation for finance

We next derive a closed equation for the one-body distribution function φL by assuming a mean-field approximation.
Let us truncate the two-body correlation (i.e., molecular chaos in kinetic theory),

φLL′(r, r′) ≈ φL(r)φL′(r′). (S19)

A closed mean-field equation for the one-body distribution φL is thereby obtained,

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+N

∑

s=±1

∫
dL′ρ(L′)

[
J̃s
LL′(r + sL/2)− J̃s

LL′(r)
]

(S20)

with the mean-field collision probability per unit time as bidder (s = +1) or asker (s = −1)

J̃s
LL′(r) =

σ2

2
|∂̃rr′ | {φL(r)φL′(r′)}

∣∣∣∣
r−r′=s(L+L′)/2

. (S21)

Equation (S20) is a closed equation for the one-body distribution function, and corresponds to the Boltzmann equation
in molecular kinetic theory.

Equation (S20) can be analytically solved for N → ∞, and the steady solution ψL(r) is given by the tent function,

ψL(r) ≡ lim
t→∞

lim
N→0

φL(r; t) =
4

L2
max

{
L

2
− |r|, 0

}
. (S22)

Here, a technicality on the appropriate boundary condition will be summarized in another technical paper [5]. Note
that the tent function (S22) for the traders’ midprice order book implies the tent functions for both bid and ask order
books in shifted coordinates (see Fig. S4 for a schematic). The average order-book profile for the ask side fA(r) is
then given by convolution with the tent function,

fA(r) =

∫
dLρ(L)ψL(r − L/2). (S23)
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dz iðtÞ
dt

¼ c tanh
ΔpðtÞ
Δp$ þ σηRi ðtÞ; ð2Þ

with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp$, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

z iðtþ 0Þ ¼ z iðtÞ −
Li

2
; z jðtþ 0Þ ¼ z jðtÞ þ

Lj

2
: ð4Þ

Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ z i − z c:m:
from the “center of mass” z c:m: ≡

P
iz i=N [Fig. 4(a)], where

the trend-following effect in Eq. (2) is absorbed into the
dynamics of z c:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
N
P

s¼&1

R
dL0ρðL0Þ½JsLL0ðrþsL=2Þ−JsLL0(with JsLL0ðrÞ≡

ðσ2=2Þj∂̃rr0 jϕLL0ðr;r0Þjr−r0¼sðLþL0Þ=2 and j∂̃rr0 jf≡j∂f=∂rjþ
j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”

ϕLL0ðr; r0Þ ≈ ϕLðrÞϕL0ðr0Þ; ð5Þ

we derive the Boltzmann-like equation with collision
integrals for the order book,

∂ϕL

∂t ≈
σ2

2

∂2ϕL

∂r2
þN

X

s¼&1

Z
dL0ρðL0Þ½̃JsLL0ðrþsL=2Þ− J̃sLL0(; ð6Þ
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with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given

for r > 0 by

fAðrÞ ¼
4e−

3r
2L%

3L%

!"
2þ r

L%

#
sinh

r
2L% −

re−
r

2L%

2L%

$
: ð9Þ

The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as
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with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
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The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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4. Mesoscopic and macroscopic data analysis
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where Js
12(r1) is the transaction probability per unit time as bidder (s = +1) or asker (s = −1). The first and second

terms on the right-hand side account for the self-diffusion and collision terms, respectively. This is a lowest-order
BBGKY hierarchical equation for the special case of N = 2. Remarkably, the collision term has a quite similar
mathematical structure to the collision integral in the conventional Boltzmann equation.

E. BBGKY hierarchical equation for many-body problem: N ≫ 1

We have derived the hierarchical equation for the one-body PDF for the special case N = 2. Here we extend the
hierarchical equation for the many-body problem with N ≫ 1. We first assume that the number of traders N is
sufficiently large that the spread distribution ρ(L) can be approximated as a continuous function. The one-body and
two-body PDFs conditional on buy-sell spread L and L′ are denoted by φL(r) and φLL′(r, r′), respectively. We note
the relations Pi(ri) = φLi(ri) and Pij(ri, rj) = φLiLj (ri, rj) hold for the one-body and two-body PDFs Pi(ri) and
Pij(ri, rj) for the traders i and j, considering the symmetry between traders. Within the spirit of the Boltzmann
equation, the dynamical equation for the one-body distribution φL(r) can be decomposed into two parts:

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+ C(φLL′) (S17)

with the self-diffusion term (σ2/2)(∂2φL/∂r2) and the collision integral C(φLL′). By extending the collision term in
Eq. (S16) for large N ≫ 1, we can specify the collision integral as

C(φLL′) = N
∑

s=±1

∫
dL′ρ(L′) [Js

LL′(r + sL/2)− Js
LL′(r)] , Js

LL′(r) =
σ∗2

2
|∂̃rr′ |φLL′(r, r′)

∣∣∣∣
r−r′=s(L+L′)/2

(S18)

with the collision probability per unit time as bidder (s = +1) or asker (s = −1) against a trader with spread L′. This
is the Boltzmann-like equation, Eq. (6) in the main text. We note that this BBGKY hierarchical equation can be
systematically derived via the pseudo-Liouville equation. The derivation will be given in another technical paper [5].

F. Boltzmann-like equation for finance

We next derive a closed equation for the one-body distribution function φL by assuming a mean-field approximation.
Let us truncate the two-body correlation (i.e., molecular chaos in kinetic theory),

φLL′(r, r′) ≈ φL(r)φL′(r′). (S19)

A closed mean-field equation for the one-body distribution φL is thereby obtained,

∂φL(r)

∂t
=
σ2

2

∂2φL(r)

∂r2
+N

∑

s=±1

∫
dL′ρ(L′)

[
J̃s
LL′(r + sL/2)− J̃s

LL′(r)
]

(S20)

with the mean-field collision probability per unit time as bidder (s = +1) or asker (s = −1)

J̃s
LL′(r) =

σ2

2
|∂̃rr′ | {φL(r)φL′(r′)}

∣∣∣∣
r−r′=s(L+L′)/2

. (S21)

Equation (S20) is a closed equation for the one-body distribution function, and corresponds to the Boltzmann equation
in molecular kinetic theory.

Equation (S20) can be analytically solved for N → ∞, and the steady solution ψL(r) is given by the tent function,

ψL(r) ≡ lim
t→∞

lim
N→0

φL(r; t) =
4

L2
max

{
L

2
− |r|, 0

}
. (S22)

Here, a technicality on the appropriate boundary condition will be summarized in another technical paper [5]. Note
that the tent function (S22) for the traders’ midprice order book implies the tent functions for both bid and ask order
books in shifted coordinates (see Fig. S4 for a schematic). The average order-book profile for the ask side fA(r) is
then given by convolution with the tent function,

fA(r) =

∫
dLρ(L)ψL(r − L/2). (S23)
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FIG. S4: From the trader’s midprice order book to the traders’ ask order book, with the coordinate shifted by L/2.

FIG. S5: Numerical plots obtained by Monte Carlo simulations of the microscopic model (S1) The parameter settings used for
the simulation are: ∆t = 1.0 × 10−2L∗2/Nσ2, L∗ = 15 tpip, ∆p∗ = 4.5 tpip, ∆z∗ = 3.15 tpip for various N . (a) Numerical
average order-book profiles f c.m.

A (rc.m.) from the CM and the theoretical guideline (S24). (b) Numerical average order-book
profiles fmid

A (rmid) from the the market midprice, showing the asymptotic equivalence f c.m.
A (rc.m.) ≈ fmid

A (rmid). (c) Numerical
mean transaction interval and the theoretical guideline (S26). (d) Numerical CDF for transaction interval and the theoretical
guideline (S27).

We discuss here the intuitive meaning of the mean-field solution (S23). The mean-field solution (S23) is exactly
zero at r = ±L/2 as ψL(+L/2) = ψL(−L/2) = 0, implying that the edge points r = ±L/2 effectively play the role
of hopping barriers at which the particle hops into r = 0. Indeed, Eq. (S22) gives exactly the same solution to the
problem of the Brownian motion confined by hopping barriers, as shown in Sec. IVB. This is a reasonable result for
the N → ∞ limit, where the market is sufficiently liquid and most of the transactions occur just around r = ±L/2.

1. Average order-book profile from the center of mass

If the spreads are distributed in accordance with the γ distribution, as empirically studied in the main text, the
average order-book profile is given by

ρ(L) =
L3e−L/L∗

6L∗4 =⇒ fA(r) =
1

L∗ f̃
( r

L∗

)
, f̃(r̃) ≡ 4

3
e−

3r̃
2

[
(2 + r̃) sinh

r̃

2
− r̃

2
e−

r̃
2

]
. (S24)

To check the validity of this formula, we performed Monte Carlo simulations of the microscopic model (S1) (Fig. S5a),
where the theoretical formula (S24) works for various N . In the figure, we denote the relative price by rc.m. to stress
that it is defined from the CM as rc.m. ≡ z − zc.m..

2. Average order-book profile from the market midprice

Technically, we have studied the average order-book profile f c.m.
A (rc.m.) from the CM instead of that from the

market midprice fmid
A (rmid), because f c.m.

A (rc.m.) is theoretically more tractable than fmid
A (rmid). Here rmid ≡ ai− zM

is the relative distance from the market midprice zM for the ask price ai of the ith trader. Fortunately, they are
asymptotically equivalent for the large N limit and the above formulation is sufficient in understanding the average
order book fmid

A (rmid) from the market midprice:

f c.m.
A (rc.m.) ≈ fmid

A (rmid) (N → ∞). (S25)

To validate this asymptotic equivalence, we numerically demonstrate the average order-book profile fmid
A (rmid) from

the market midprice zmid in Fig. S5b. This figure numerically shows that the average order-book formula (S24) is
valid even for the order book from the market midprice.

with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given

for r > 0 by
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The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼
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dLρðLÞϕLðr − L=2Þ is then given
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The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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FIG. S3: Relative price ri ≡ zi−zc.m. from the CM. (a) The quoted bid and ask prices (bi, ai) of an individual trader are plotted
with the CM and market price (zc.m., p). (b) The trend-following effect is removed in the moving frame ri. The trajectories
were obtained from a Monte Carlo simulation of the microscopic model (S1) with time unit L∗2/σ2, discretized time step
∆t = 4.0× 10−4L∗2/σ2, L∗ = 15 tpip, ∆p∗ = 6.75 tpip, ∆z∗ = 3.6 tpip, and N = 25.

with a standard Gaussian random number ηRi according to our empirical finding (1) in the main text. Transaction
rule is also assumed the same as the continuous model (S1). Here, the infinitesimal time step dt is different from the
mean-cancellation interval ∆tcan. A schematic trajectory described by this Poisson dynamics is illustrated in Fig. S2.
The continuous model (S1) is obtained in the high-frequent cancellation limit λ → ∞ for the discrete model (S3).
The HFTs’ nature on high-frequent price modifications is thus reflected in the continuous model (S1).

C. Introduction of the center of mass and the corresponding relative price

We here introduce the center of mass (CM) and the corresponding relative price (see Fig. S3 for a schematic):

zc.m. ≡
1

N

N∑

i=1

zi, ri ≡ zi − zc.m.. (S4)

The dynamics of the CM and the relative price is given by

dzc.m.

dt
= c tanh

∆p

∆p∗
+ ξ,

dri
dt

= σηRi + ηTi − ξ, ξ ≡ 1

N

N∑

j=1

(
σηRj + ηTj

)
. (S5)

Remarkably, trend following only appears in the dynamics of the CM, but does not appear in that of the relative price.
This is natural because trend following induces a collective behavior of traders, and can be absorbed into the dynamics
of the CM. Furthermore, the contribution of ξ is much smaller than that of σηRi and ηTi for N → ∞: |ξ| ≪ |σηRi +ηTi |.
In the moving frame of the CM, the dynamics of the relative price ri is thus simplified and approximately obeys the
following dynamical equation:

dri
dt

≈ σηRi + ηTi . (S6)

D. BBGKY Hierarchical equation for two-body problem: N = 2

Before deriving the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchical equation for N ≫ 1, we first
consider the two-body system of traders to specify the collision integrals. Extension to the many-body problem will
be studied in the next subsection. Let us denote the relative midprices of the first and second traders by r1 and r2
with constant spreads L1 and L2. The dynamics is given by

dr1
dt

= σηR1;ε +
∞∑

k=1

∆r1δ(t− τk),
dr2
dt

= σηR2;ε +
∞∑

k=1

∆r2δ(t− τk) (S7)

with jump sizes ∆r1, ∆r2 and k-th transaction time τk. Here, ηi;ε is the colored Gaussian noise satisfying
⟨ηRi;ε(t)ηRj;ε(s)⟩ = δije−|t−s|/ε/2ε for i, j = 1, 2. Later, we shall take the ε → 0 limit, whereby colored Gaussian

with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given

for r > 0 by
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The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given
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The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given

for r > 0 by

fAðrÞ ¼
4e−

3r
2L%

3L%

!"
2þ r

L%

#
sinh

r
2L% −

re−
r

2L%

2L%

$
: ð9Þ

The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as
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with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
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The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3
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; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼
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The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given
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The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−
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between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
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where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as
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with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
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The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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4. Mesoscopic and macroscopic data analysis

The price movements obey an exponential law for short
periods but simultaneously obey a power law over long
periods with exponent α ¼ 3.6" 0.13 [Fig. 5(e)]. This
apparent discrepancy originates from the power-law nature
of the decay length κ. Because κ approximately obeys a
power-law CDF Qð≥ κÞ ∼ κ−m over the week with m ¼
3.5" 0.13 [Fig. 5(f)], the one-week CDF Pwð≥ jΔpjÞ
asymptotically obeys the power law as a superposition
of the two-hourly segmented exponential CDF,

Pwð≥ jΔpjÞ ¼
Z

∞

0
dκQðκÞP2hð≥ jΔpj; κÞ ∝jΔpj−m;

ð11Þ

with QðκÞ≡ −dQð≥ κÞ=dκ, consistently with empirical
exponent α≈m. Our result is therefore consistent with the
previous reported power law [24–27] as a nonstationary
property of κ.
Since our trend-following HFT model exhibits the order-

book collective motion [Figs. 4(d) and 4(e)], this model can
reproduce the layered order-book structure [15] (see
Supplemental Material [35]). Let us define c−rðcþr Þ and
a−rðaþr Þ as the number of bid (ask) submissions and
cancellations between one tick at the relative distance r
from the market midprice. We also define the number
change N−

r ¼ c−r − a−r ðNþ
r ¼ cþr − aþr Þ at the distance r

for the bid (ask) side. Correlation coefficient C−
rðCþ

r Þ is
plotted in Fig. 5(g) between N−

rðNþ
r Þ and Δp, showing

positive and negative correlation in the inner (outer)
and outer (inner) layers, respectively. We further show a
linear correlation between the price movement Δp
and the total number change in the inner layer Ninner≡R
γc
−∞ drðN−

r − Nþ
r Þ. The trend-following HFT model is thus

qualitatively consistent with the previous findings [15] (see
also Supplemental Material for data analyses [35]), imply-
ing that the layered structure was the direct consequence of
the collective motion.
Discussion.—We have empirically studied the trend

following of HFTs, inducing the collective motion of the
order book. This property has not been captured in the
previous order-book model [16–21] and was critical in
reproducing our empirical findings. Indeed, none of our
empirical findings, the order-book profile, the exponential
price movement, and the layered order-book structure [15]
were reproduced by the previous order-book model under
realistic parameters in the absence of the collective motion
(see Supplemental Material [35]). We expect that intro-
duction of this collective motion to order-book models
would be the key to replicate these empirical findings.
Conclusion.—We have established both a microscopic

model and a kinetic theory for FX traders by direct
observation of the HFTs’ dynamics, quantitatively agreeing
with empirical results under minimal assumptions. In the
stream of econophysics, our model (2) is the first micro-
scopic model directly supported by microscopic dynamical

evidence and exhibiting agreement with mesoscopic and
macroscopic findings. We expect that a new stream arises
toward systematic descriptions of the financial market
based on microscopic evidence. Interested readers are
referred to Ref. [43] for more mathematical details.
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α ≈ m ≈ 3.5

with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given

for r > 0 by

fAðrÞ ¼
4e−

3r
2L%

3L%

!"
2þ r

L%

#
sinh

r
2L% −

re−
r

2L%

2L%

$
: ð9Þ

The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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Power law !!

Exponential

The price movements obey an exponential law for short
periods but simultaneously obey a power law over long
periods with exponent α ¼ 3.6" 0.13 [Fig. 5(e)]. This
apparent discrepancy originates from the power-law nature
of the decay length κ. Because κ approximately obeys a
power-law CDF Qð≥ κÞ ∼ κ−m over the week with m ¼
3.5" 0.13 [Fig. 5(f)], the one-week CDF Pwð≥ jΔpjÞ
asymptotically obeys the power law as a superposition
of the two-hourly segmented exponential CDF,

Pwð≥ jΔpjÞ ¼
Z

∞

0
dκQðκÞP2hð≥ jΔpj; κÞ ∝jΔpj−m;

ð11Þ

with QðκÞ≡ −dQð≥ κÞ=dκ, consistently with empirical
exponent α≈m. Our result is therefore consistent with the
previous reported power law [24–27] as a nonstationary
property of κ.
Since our trend-following HFT model exhibits the order-

book collective motion [Figs. 4(d) and 4(e)], this model can
reproduce the layered order-book structure [15] (see
Supplemental Material [35]). Let us define c−rðcþr Þ and
a−rðaþr Þ as the number of bid (ask) submissions and
cancellations between one tick at the relative distance r
from the market midprice. We also define the number
change N−

r ¼ c−r − a−r ðNþ
r ¼ cþr − aþr Þ at the distance r

for the bid (ask) side. Correlation coefficient C−
rðCþ

r Þ is
plotted in Fig. 5(g) between N−

rðNþ
r Þ and Δp, showing

positive and negative correlation in the inner (outer)
and outer (inner) layers, respectively. We further show a
linear correlation between the price movement Δp
and the total number change in the inner layer Ninner≡R
γc
−∞ drðN−

r − Nþ
r Þ. The trend-following HFT model is thus

qualitatively consistent with the previous findings [15] (see
also Supplemental Material for data analyses [35]), imply-
ing that the layered structure was the direct consequence of
the collective motion.
Discussion.—We have empirically studied the trend

following of HFTs, inducing the collective motion of the
order book. This property has not been captured in the
previous order-book model [16–21] and was critical in
reproducing our empirical findings. Indeed, none of our
empirical findings, the order-book profile, the exponential
price movement, and the layered order-book structure [15]
were reproduced by the previous order-book model under
realistic parameters in the absence of the collective motion
(see Supplemental Material [35]). We expect that intro-
duction of this collective motion to order-book models
would be the key to replicate these empirical findings.
Conclusion.—We have established both a microscopic

model and a kinetic theory for FX traders by direct
observation of the HFTs’ dynamics, quantitatively agreeing
with empirical results under minimal assumptions. In the
stream of econophysics, our model (2) is the first micro-
scopic model directly supported by microscopic dynamical

evidence and exhibiting agreement with mesoscopic and
macroscopic findings. We expect that a new stream arises
toward systematic descriptions of the financial market
based on microscopic evidence. Interested readers are
referred to Ref. [43] for more mathematical details.
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with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given

for r > 0 by

fAðrÞ ¼
4e−

3r
2L%

3L%

!"
2þ r

L%

#
sinh

r
2L% −

re−
r

2L%

2L%

$
: ð9Þ

The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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Model 4: N-body stochastic dealer model + trend-following

1. A microscopic model is developed for FX traders by direct observation of 
the HFTs’ dynamics.

2. A kinetic theory is constructed to show consistencies of the microscopic 
model with mesoscopic and macroscopic findings.

3. The present model is the first microscopic model directly supported by 
microscopic dynamical evidence and exhibiting agreement with 
mesoscopic and macroscopic findings.

4. Introduction of collective motion to order-book models is the key to 
replicate empirical findings.
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5. Summary



Future problems 
l Validity check for the kinetic theory
l Use of more data, new data, bigger data
l Diversity (poly-dispersity) in traders / financial instruments
l Beyond mean field, non-global coupling
l Memory, fictitious mass
l Very fast dynamics
l Mechanisms of financial crash
l ...

Performing computer simulations is promising!!
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Model 4: N-body stochastic dealer model + trend-following

• Market name: Electronic Broking Services (EBS)
• Actions of traders:

– Limit order: Quoting price with a certain volume and the quoted price 
displayed on the order book.  922 traders submitted this in the data set. 

– Market order: Buying or selling currencies immediately at the available best 
price. 93 traders submitted this in the data set.

– Cancellation
• High frequency trader (HFT): 

– Submit more than 500 times a day on average (134/1015). 
– Rapidly grown recently (87.8% of the total orders were submitted by the HFTs 

in the data set). 27

0. Details of the market



Model 4: N-body stochastic dealer model + trend-following
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with J̃sLL0ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s¼ þ1 (s¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp% þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given

for r > 0 by

fAðrÞ ¼
4e−

3r
2L%

3L%

!"
2þ r

L%

#
sinh

r
2L% −

re−
r

2L%

2L%

$
: ð9Þ

The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−

r ðCþ
r Þ are numerically plotted between N−

r ðNþ
r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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(asker). Because traders exhibit collective motion arising
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derived as the macroscopic description of the model (2),
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trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L%4 e
−L=L%

; ð8Þ

with decay length L% ¼ 15.5& 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given

for r > 0 by

fAðrÞ ¼
4e−

3r
2L%

3L%

!"
2þ r

L%

#
sinh

r
2L% −

re−
r

2L%

2L%

$
: ð9Þ

The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥jΔpj; κÞ≈e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈2Δz%=3, average movement from
trend-following Δz% ≡ cτ%, average transaction interval
τ% ≈3L%2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥jΔp̃jÞ≡ P2hð≥κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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FIG. 5. (a) Daily distribution of buy-sell spreads for HFTs with the empirical master curve (8). (b) Daily average order-book profile for the
best prices of HFTs, agreeing with our theoretical line (9) without fitting parameters. Here the relative depth is measured from the market
midprice instead of the c.m. for simplicity, which did not cause big numerical difference in comparing with our theory (see Supplemental
Material [35]). (c) Two-hourly segmented CDFs for the price movement in one-tick precision for the three typical time regions (see
Supplemental Material [35]). The CDFs are exponential, consistently with our theoretical prediction (10). (d) Two-hourly segmented CDFs
are scaled into the single exponential master curve every 2 hours (62 time regions). (e) Price movement CDF over the whole week obeys a
power-law of exponent α. (f) Decay length κ obeys a power-law Qð≥κÞ∼κ−m. (g) Order-book layered structure by our HFT model.
Pearson’s coefficient C−
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r Þ and Δp with crossover point γc ≈16.5 tpip. (h) Linear correlation

between the total number change Ninner in the inner layer and the price movement Δp with correlation coefficient of 0.63.
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4. Mesoscopic and macroscopic data analysis


